본 논문은 교사 있는 학습기의 Kohonen Feature Map에 고차 뉴런을 도입, 고차 뉴런을 이용한 Kohonen의 자기 조직화 맵을 제안한다. 일반적인 Kohonen Feature Map의 특징은 입력신호를 받아 출력 면(Kohonen Feature Map) 내의 특정한 위치 주위에 집중하는 메커니즘으로 즉, 국소집중 반응을 구하는 구조이다. 본 논문에서는 종래형의 Kohonen Feature Map의 특징을 보유하며 교사 있는 학습기의 Kohonen Feature Map에 고차 뉴런을 도입하여 국소집중반응 및 특징 축출이 용이하도록 네트워크 구조를 개선한 것이다. 특히, 일차 뉴런의 문제점인 비선형 분리 문제에 대하여 교사 있는 학습기의 Kohonen Feature Map의 입력층에 고차 뉴런을 도입함으로 비선형 분리 가능한 형태의 네트워크 구조로 형성하였다. 그러나, 일반적인 고차 뉴런의 문제점을 보안하기 위해 본 논문에서는 오직 2차 뉴런만을 생성하였으며 중복되는 뉴런을 최대한 억제하였다. 본 제안 모델의 특성을 살펴보기 위해 XOR문제와 20개의 Alphabet을 식별하는 패턴인식 시뮬레이션을 했으며, 본 제안 모델의 범화능력을 알아보기 위하여 Mirror Symmetry를 사용하여 계산기 시뮬레이션을 했다. 그 결과, 본 제안 모델이 종래형의 네트워크 구조보다 뛰어난 인식률을 얻을 수 있었다.
The Transactions of the Korean Institute of Electrical Engineers D
/
v.52
no.5
/
pp.277-282
/
2003
In this paper we propose Using Higher Order Neuron on the Supervised Learning Machine of the Kohonen Feature Map. The architecture of proposed model adopts the higher order neuron in the input layer of Kohonen Feature Map as a Supervised Learning Machine. It is able to estimate boundary on input pattern space because or the higher order neuron. However, it suffers from a problem that the number of neuron weight increases because of the higher order neuron in the input layer. In this time, we solved this problem by placing the second order neuron among the higher order neuron. The feature of the higher order neuron can be mapped similar inputs on the Kohonen Feature Map. It also is the network with topological mapping. We have simulated the proposed model in respect of the recognition rate by XOR problem, discrimination of 20 alphabet patterns, Mirror Symmetry problem, and numerical letters Pattern Problem.
Proceedings of the Korean Society of Computer Information Conference
/
2015.07a
/
pp.250-251
/
2015
본 논문에서는 자기 조직화 기능을 갖는 Kohonen의 SOM(Self organization map) 신경회로망과 주어지는 데이터에 따라 초기의 클러스터 개수를 설정하여 처리하는 수정된 K-Means 알고리즘을 결합한 Hybrid Kohonen Network 를 제안한다. 또한, 실제의 항공영상에 적용하여 고전적인 K-Means 알고리즘 및 고전적인 SOM 알고리즘보다 우수함을 보인다.
Communications for Statistical Applications and Methods
/
v.10
no.2
/
pp.507-517
/
2003
Self-organizing map (SOM) has been developed mainly by T. Kohonen and his colleagues as a unsupervised learning neural network. Because of its topological ordering property, SOM is known to be very useful in pattern recognition and text information retrieval areas. Recently, data miners use Kohonen´s mapping method frequently in exploratory analyses of large data sets. One problem facing SOM builder is that there exists no sensible criterion for evaluating goodness-of-fit of the map at hand. In this short communication, we propose valid evaluation procedures for the Kohonen SOM of any size. The methods can be used in selecting the best map among several candidates.
Shuhe, Zhao;Xiuwan, Chen;Junfeng, Chen;Yinghai, Ke
Proceedings of the KSRS Conference
/
2003.11a
/
pp.1337-1339
/
2003
In this article, a new remote sensing image fusion model based on modified Kohonen networks is given. And a new fusion rule based on modified voting rule was established. Select Shaoxing City as the study site, located at Zhejiang Province, P.R.China. The fusion experiment between Landsat TM data (30m) and IRS-C Pan data (5.8m) was performed using the given fusion method. The fusion results show that the new method can gain better result in apply ing to the lower hill area, and the whole classification accuracy was 10% higher than the basic Kohonen method. The confusion between the woodlands and the waterbodies was also diminished.
고전적인 GLA 알고리즘과 마찬가지로 Kohonen 학습법은 경도 강하법으로 오차함수의 해에 접근해 나간다. 따라서 KLA의 이러한 문제를 극복하기 위해 모의 담금질법의 일종인 Cauchy 학습법을 응용을 제안한다. 그러나 이 방법은 학습시간이 느리다고 하는 단점이 있다. 본 논문 이 점을 개선시키기 위해 Cauchy 학습법과 Kohonen 학습법을 순차 결합시킨 또 다른 학습법을 제안한다. 그 결과 코시 학습법과 마찬가지로 국부최적 문제를 극복하면서도 삭습시간을 단축할 수 있었다.
This paper describes an algorithm for short term load forecasting using the Kohonen neural network. Single layer Kohonen neural network presents a lot of advantageous features for practical application. It takes less training time compared to other networks such as BP network, and moreover, its self organized feature can amend the distorted data. The originality of proposed approach is to use a Kohonen map toclassify data representing load patterns and to use directly the information stored in the weight vectors of the Kohonen map to pridict the load. Proposed method was tested with KEPCO hourly record(1993-1995) show better forecasting results compared with conventional exponential smoothing method.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2001.10a
/
pp.571-574
/
2001
In our paper, We propose an efficient adaptive coding method using kohonen neural network. An efficient adaptive encoding method using Kohonen net work is discribed through the analysis of those compression methods with the application of the neural network. In order to increase the compression ratio, a image is first divided into 8*8 subimages, then all subimages are transformed by DCT. These DCT sub-blocks are divided into N(4) classes by Kohonen network. Hits are distributed according to the variance of the DCT sub-block. Thus we get N(4)bit allocation matrices. Excellent performance is shown by the computer simulation. so we found that our proposed method is better then classifing subimages by AC energy.
백터 양자화기 설계는 다차원의 목적함수를 최소화하는 학습 알고리즘을 필요로 한다. 일반화된 Lloyd 방법(GLA)은 벡터 양자화기 설계를 위해 오늘날 가장 널리 사용되는 알고리즘이다. GLA 는 일괄처리(batch) 방식으로 코드북을 생성하며 목적함수를 단조 감소시키는 강하법(descent algorithm)의 일종이다. 한편 Kohonen 학습법(KLA)은 학습벡터가 입력되는 동안 코드북이 갱신되는 온라인 벡터 양자화기 설계 알고리즘 이다. KLA는 원래 신경망 학습을 위해 Kohonen에 의해 제안되었다. KLA 역시 GLA와 마찬가지로 강하법의 일종이라 할 수 있다. 따라서 이들 두 알고리즘은, 비록 사용하기 편리하고 안정적으로 동작을 하지만, 극소(local minimum) 점으로 수렴하는 문제를 안고 있다. 우리는 이 문제와 관련하여 simulated annealing(SA) 방법의 응용을 논하고자 한다. SA는 현재까지 극소에 빠지지 않고 최소(global minimum)로 수렴하면서, 해의 수렴이 (통계적으로) 보장되는 유일한 방법이라 할 수 있다. 우리는 먼저 GLA에 SA를 응용한 그 동안의 연구를 개괄한다. 다음으로 온라인 방식의 벡터 양자화가 설계에 SA 방법을 응용함으로써 SA 방법에 기초한 새로운 온라인 학습 알고리즘을 제안한다. 우리는 이 알고리즘을 OLVQ-SA 알고리즘이라 부르기로 한다. 가우스-마코프 소스와 음성데이터에 대한 벡터양자화 실험 결과 제안된 방법이 KLA 보다 일관되게 우수한 코드북을 생성함을 보인다.
In this paper, center detection and motion analysis of a moving object are studied. Kohonen's self-organizing neural network models are used for the moving objects tracking and time delay neural networks are used for dynamic characteristic analysis. Instead of objects brightness, neuron projections by Kohonen Networks are used. The motion of target objects can be analyzed by using the differential neuron image between the two projections. The differential neuron image which is made by two consecutive neuron projections is used for center detection and moving objects tracking. The two differential neuron images which are made by three consecutive neuron projections are used for the moving trajectory estimation. It is possible to distinguish 8 directions of a moving trajectory with two frames and 16 directions with three frames.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.