• Title/Summary/Keyword: Kohonen

Search Result 165, Processing Time 0.026 seconds

Supervised Kohonen Feature Map Using Higher Order Neuron (고차 뉴런을 이용한 KOHONEN의 자기 조직화 맵)

  • Jung, Jong-Soo;Hagiwara, Massfume
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2656-2659
    • /
    • 2001
  • 본 논문은 교사 있는 학습기의 Kohonen Feature Map에 고차 뉴런을 도입, 고차 뉴런을 이용한 Kohonen의 자기 조직화 맵을 제안한다. 일반적인 Kohonen Feature Map의 특징은 입력신호를 받아 출력 면(Kohonen Feature Map) 내의 특정한 위치 주위에 집중하는 메커니즘으로 즉, 국소집중 반응을 구하는 구조이다. 본 논문에서는 종래형의 Kohonen Feature Map의 특징을 보유하며 교사 있는 학습기의 Kohonen Feature Map에 고차 뉴런을 도입하여 국소집중반응 및 특징 축출이 용이하도록 네트워크 구조를 개선한 것이다. 특히, 일차 뉴런의 문제점인 비선형 분리 문제에 대하여 교사 있는 학습기의 Kohonen Feature Map의 입력층에 고차 뉴런을 도입함으로 비선형 분리 가능한 형태의 네트워크 구조로 형성하였다. 그러나, 일반적인 고차 뉴런의 문제점을 보안하기 위해 본 논문에서는 오직 2차 뉴런만을 생성하였으며 중복되는 뉴런을 최대한 억제하였다. 본 제안 모델의 특성을 살펴보기 위해 XOR문제와 20개의 Alphabet을 식별하는 패턴인식 시뮬레이션을 했으며, 본 제안 모델의 범화능력을 알아보기 위하여 Mirror Symmetry를 사용하여 계산기 시뮬레이션을 했다. 그 결과, 본 제안 모델이 종래형의 네트워크 구조보다 뛰어난 인식률을 얻을 수 있었다.

  • PDF

Using Higher Order Neuron on the Supervised Learning Machine of Kohonen Feature Map (고차 뉴런을 이용한 교사 학습기의 Kohonen Feature Map)

  • Jung, Jong-Soo;Hagiwara, Masafumi
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.277-282
    • /
    • 2003
  • In this paper we propose Using Higher Order Neuron on the Supervised Learning Machine of the Kohonen Feature Map. The architecture of proposed model adopts the higher order neuron in the input layer of Kohonen Feature Map as a Supervised Learning Machine. It is able to estimate boundary on input pattern space because or the higher order neuron. However, it suffers from a problem that the number of neuron weight increases because of the higher order neuron in the input layer. In this time, we solved this problem by placing the second order neuron among the higher order neuron. The feature of the higher order neuron can be mapped similar inputs on the Kohonen Feature Map. It also is the network with topological mapping. We have simulated the proposed model in respect of the recognition rate by XOR problem, discrimination of 20 alphabet patterns, Mirror Symmetry problem, and numerical letters Pattern Problem.

Areal Image Clustering using Hybrid Kohonen Network (Hybrid Kohonen 네트워크에 의한 항공영상 클러스터링)

  • Lee, Kyunghee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.07a
    • /
    • pp.250-251
    • /
    • 2015
  • 본 논문에서는 자기 조직화 기능을 갖는 Kohonen의 SOM(Self organization map) 신경회로망과 주어지는 데이터에 따라 초기의 클러스터 개수를 설정하여 처리하는 수정된 K-Means 알고리즘을 결합한 Hybrid Kohonen Network 를 제안한다. 또한, 실제의 항공영상에 적용하여 고전적인 K-Means 알고리즘 및 고전적인 SOM 알고리즘보다 우수함을 보인다.

  • PDF

Validity Study of Kohonen Self-Organizing Maps

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.507-517
    • /
    • 2003
  • Self-organizing map (SOM) has been developed mainly by T. Kohonen and his colleagues as a unsupervised learning neural network. Because of its topological ordering property, SOM is known to be very useful in pattern recognition and text information retrieval areas. Recently, data miners use Kohonen´s mapping method frequently in exploratory analyses of large data sets. One problem facing SOM builder is that there exists no sensible criterion for evaluating goodness-of-fit of the map at hand. In this short communication, we propose valid evaluation procedures for the Kohonen SOM of any size. The methods can be used in selecting the best map among several candidates.

A New Method of Remote Sensing Image Fusion Based on Modified Kohonen Networks

  • Shuhe, Zhao;Xiuwan, Chen;Junfeng, Chen;Yinghai, Ke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1337-1339
    • /
    • 2003
  • In this article, a new remote sensing image fusion model based on modified Kohonen networks is given. And a new fusion rule based on modified voting rule was established. Select Shaoxing City as the study site, located at Zhejiang Province, P.R.China. The fusion experiment between Landsat TM data (30m) and IRS-C Pan data (5.8m) was performed using the given fusion method. The fusion results show that the new method can gain better result in apply ing to the lower hill area, and the whole classification accuracy was 10% higher than the basic Kohonen method. The confusion between the woodlands and the waterbodies was also diminished.

  • PDF

Vector Quantization Using Cascaded Cauchy/Kohonen training (Cauchy/Kohonen 순차 결합 학습법을 사용한 벡터양자화)

  • Song, Geun-Bae;Han, Man-Geun;Lee, Haeng-Se
    • The KIPS Transactions:PartB
    • /
    • v.8B no.3
    • /
    • pp.237-242
    • /
    • 2001
  • 고전적인 GLA 알고리즘과 마찬가지로 Kohonen 학습법은 경도 강하법으로 오차함수의 해에 접근해 나간다. 따라서 KLA의 이러한 문제를 극복하기 위해 모의 담금질법의 일종인 Cauchy 학습법을 응용을 제안한다. 그러나 이 방법은 학습시간이 느리다고 하는 단점이 있다. 본 논문 이 점을 개선시키기 위해 Cauchy 학습법과 Kohonen 학습법을 순차 결합시킨 또 다른 학습법을 제안한다. 그 결과 코시 학습법과 마찬가지로 국부최적 문제를 극복하면서도 삭습시간을 단축할 수 있었다.

  • PDF

Short Term Load Forecasting Using The Kohonen Neural Network (코호넨 신경망을 이용한 단기 전력수요 예측)

  • Cho, Sung-Woo;Hwang, Kab-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.447-449
    • /
    • 1996
  • This paper describes an algorithm for short term load forecasting using the Kohonen neural network. Single layer Kohonen neural network presents a lot of advantageous features for practical application. It takes less training time compared to other networks such as BP network, and moreover, its self organized feature can amend the distorted data. The originality of proposed approach is to use a Kohonen map toclassify data representing load patterns and to use directly the information stored in the weight vectors of the Kohonen map to pridict the load. Proposed method was tested with KEPCO hourly record(1993-1995) show better forecasting results compared with conventional exponential smoothing method.

  • PDF

KOHONEN NETWORK FOR ADAPTIVE IMAGE COMPRESSION (영상압축을 위한 코넨네트워크)

  • 손형경;이영식;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.571-574
    • /
    • 2001
  • In our paper, We propose an efficient adaptive coding method using kohonen neural network. An efficient adaptive encoding method using Kohonen net work is discribed through the analysis of those compression methods with the application of the neural network. In order to increase the compression ratio, a image is first divided into 8*8 subimages, then all subimages are transformed by DCT. These DCT sub-blocks are divided into N(4) classes by Kohonen network. Hits are distributed according to the variance of the DCT sub-block. Thus we get N(4)bit allocation matrices. Excellent performance is shown by the computer simulation. so we found that our proposed method is better then classifing subimages by AC energy.

  • PDF

On-line Vector Quantizer Design Using Simulated Annealing Method (Simulated Annealing 방법을 이용한 온라인 벡터 양자화기 설계)

  • Song, Geun-Bae;Lee, Haeng-Se
    • The KIPS Transactions:PartB
    • /
    • v.8B no.4
    • /
    • pp.343-350
    • /
    • 2001
  • 백터 양자화기 설계는 다차원의 목적함수를 최소화하는 학습 알고리즘을 필요로 한다. 일반화된 Lloyd 방법(GLA)은 벡터 양자화기 설계를 위해 오늘날 가장 널리 사용되는 알고리즘이다. GLA 는 일괄처리(batch) 방식으로 코드북을 생성하며 목적함수를 단조 감소시키는 강하법(descent algorithm)의 일종이다. 한편 Kohonen 학습법(KLA)은 학습벡터가 입력되는 동안 코드북이 갱신되는 온라인 벡터 양자화기 설계 알고리즘 이다. KLA는 원래 신경망 학습을 위해 Kohonen에 의해 제안되었다. KLA 역시 GLA와 마찬가지로 강하법의 일종이라 할 수 있다. 따라서 이들 두 알고리즘은, 비록 사용하기 편리하고 안정적으로 동작을 하지만, 극소(local minimum) 점으로 수렴하는 문제를 안고 있다. 우리는 이 문제와 관련하여 simulated annealing(SA) 방법의 응용을 논하고자 한다. SA는 현재까지 극소에 빠지지 않고 최소(global minimum)로 수렴하면서, 해의 수렴이 (통계적으로) 보장되는 유일한 방법이라 할 수 있다. 우리는 먼저 GLA에 SA를 응용한 그 동안의 연구를 개괄한다. 다음으로 온라인 방식의 벡터 양자화가 설계에 SA 방법을 응용함으로써 SA 방법에 기초한 새로운 온라인 학습 알고리즘을 제안한다. 우리는 이 알고리즘을 OLVQ-SA 알고리즘이라 부르기로 한다. 가우스-마코프 소스와 음성데이터에 대한 벡터양자화 실험 결과 제안된 방법이 KLA 보다 일관되게 우수한 코드북을 생성함을 보인다.

  • PDF

A Study on Center Detection and Motion Analysis of a Moving Object by Using Kohonen Networks and Time Delay Neural Networks (코호넨 네트워크 및 시간 지연 신경망을 이용한 움직이는 물체의 중심점 탐지 및 동작특성 분석에 관한 연구)

  • Hwang, Jung-Ku;Kim, Jong-Young;Jang, Tae-Jeong
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.91-98
    • /
    • 2001
  • In this paper, center detection and motion analysis of a moving object are studied. Kohonen's self-organizing neural network models are used for the moving objects tracking and time delay neural networks are used for dynamic characteristic analysis. Instead of objects brightness, neuron projections by Kohonen Networks are used. The motion of target objects can be analyzed by using the differential neuron image between the two projections. The differential neuron image which is made by two consecutive neuron projections is used for center detection and moving objects tracking. The two differential neuron images which are made by three consecutive neuron projections are used for the moving trajectory estimation. It is possible to distinguish 8 directions of a moving trajectory with two frames and 16 directions with three frames.

  • PDF