• Title/Summary/Keyword: Kobe Earthquake

Search Result 92, Processing Time 0.035 seconds

Evaluation of the Seismic Safely of Concrete Gravity Dams (콘크리트 중력식 댐의 내진 안전성 평가)

  • 소진호;정영수;김용곤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.33-41
    • /
    • 2002
  • Recently, the seismic safety evaluation of concrete gravity dams is raised due to the damage or the failure of dams occurred by the 1995 Kobe earthquake, the 1999 Taiwan earthquake, etc. Failre of dam may incur loss of life and properties around the dam as well as damage to dam structure itself. Recently, there has been growing much concerns about 'earthquake-resistance' or 'seismic safety'of existing concrete gravity dams designed before current seismic design provisions were implemented. This research develops three evaluation levels for seismic safety of concrete gravity dams on the basis of the evaluation method of seismic safety of concrete gravity dams in U.S.A., Japan, Canada, and etc. level 1 is a preliminary evaluation which is for purpose f screening. Level 2 is a pseudo-static evaluation on the basis of the seismic intensity method. Finally, level 3 is a detail evaluation by the dynamic analysis. Evaluation results on existing concrete gravity dam on operation showed good seismic performance under the designed artificial earthquake.

Seismic Response Analysis at Multi-layered Ground During Large Earthquake (대형지진시 다층지반의 지진응답해석)

  • 김용성
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.55-64
    • /
    • 2002
  • In the present study, in order to apply a cyclic viscoelastic-viscoplastic constitutive model to multi-layered ground conditions during large earthquake, the numerical simulations of the 1995 Hyogoken Nanbu Earthquake at Port Island, Kobe, Japan, were performed by the seismic response analysis. From the seismic response analysis, it was found that the acceleration calculated from the cyclic elasto-viscoplastic model and cyclic viscoelastic-viscoplastic models for clay was in close agreement with the recorded accelerations at the Port Island down-hole array, and the cyclic elastic-viscoplastic and viscoelastic-viscoplastic constitutive models showed little different behavior characteristics near clay layer. Thus, the propriety of viscoplastic model for clay was convinced. Therefore, it can be concluded that a cyclic viscoelastic-viscoplastic constitutive model can give a good description of the amplification and also it showed accurate damping characteristics of clay during large event which induces plastic deformation in large strain range.

Effect that The way Making Community Development Plan by Rehabilitation Promotion Council and Village Together in Ota-District Affected Continuous Community Development -The Case of Revitalization Community Development Making Plan, which is Chuetu Earthquake Affected Area, in Nagaoka-city, Niigata-Prefecture, Japan- (오오타 지구의 부흥·활성 협의회와 마을 자치회의 연계를 통한 지역 가꾸기 계획안 책정 방법이 지속적인 지역 가꾸기에 미친 효과 -일본 츄에츠 지진 피해지역 니가타 현, 나가오카 시, 지역부흥디자인책정지원사업 사례-)

  • Kim, Du-Han
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.3
    • /
    • pp.89-106
    • /
    • 2013
  • In this study, the effectiveness of the method for the promotion council to make rehabilitation community development plan with rural villages to continue community development is investigated in Ota-district, which is affected by chuetu earthquake. Initially, Ota-district made the acting contents of the plan based on the village's request, which is considered resident life and problems in village. Next, Ota-district made the vision of plan based on the acting contents. This plan procedure has been effective to compliment the village community facilities and running on village event, in addition to setting the village's community to continue to manage community facilities and event. As a result, this way has helped good management of village event using the facilities and interchanging among residents. Also, the use of acting contents by request of the promotion council and village's community, while respecting both, has been effective in that the promotion council assists the village event after the rehabilitation community development plan is finished.

A Comparative Analysis of Korea-Japan Seismic Recovery System (한일 지진 복구체계의 비교 분석)

  • Lee, JunBeom
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.3
    • /
    • pp.458-471
    • /
    • 2020
  • Purpose: In Korea, the frequency and frequency of earthquakes are increasing every year. Therefore, the purpose of this study was to compare and analyze the characteristics and examples of earthquakes in Korea and Japan, and to propose improvements to the earthquake prevention policy in Korea. Method: In this study, we investigate and evaluate Japan's response in two cases: the Kobe earthquake and the East Japan earthquake. After surveying and evaluating the nation's countermeasures in the two events, Gyeongju and Pohang, they were compared. Result: When comparing recovery systems in Korea and Japan, there were significant differences in plans for restoration of road transport networks, regional disaster prevention plans, and the introduction of Conclusion: considering the physical distance between Korea's earthquake-prone areas and the capital, the government should quickly come up with countermeasures to ensure that immediate earthquake response in the region is enhanced through the detailed establishment of the Functional Continuity Plan (COOP), and that administrative functions will function normally in the event of a disaster through the introduction of the administrative BCP concept.

Nonlinear Earthquake Analysis of a Steel Girder Bridge using Point Hinge Models (힌지모델을 이용한 강 거더 교량의 비선형 지진해석)

  • Lee, Do Hyung;Kim, Yong Il;Lee, Doo Ho;Jeon, Jeong Moon
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.403-411
    • /
    • 2009
  • In the present study, nonlinear earthquake analysis was carried out for a steel girder bridge that had been damaged by the 1995 Kobe earthquake. For such analysis, the use of hysteretic models describing flexure-axial and shear-axial interaction was suggested. The models were incorporated into a structural analysis program in terms of the joint elements representing hinge models, and then a simplified analysis scheme using the hinge models was employed for bridge piers. The analytical predictions of the flexure-axial interactive hinge model show a good correlation with those of the detailed fiber element model. In addition, the analytical predictions of the flexure-shear-axial interactive hinge model enable a displacement component to be separately captured. It is thus recognized that the present study can be a useful scheme for the healthy evaluation of the global displacement performance of piers subjected to earthquake excitation.

Applications of Volunteer Fire Fighters against Great Disasters and its Implications (대규모 재난대비를 위한 의용소방대 활용방안과 시사점)

  • Choi, Junho;Choi, Choongik
    • Fire Science and Engineering
    • /
    • v.32 no.5
    • /
    • pp.87-94
    • /
    • 2018
  • This study examined the role of volunteer fire fighters in coping with great disasters in terms of community-based disaster management to provide some implications from a qualitative comparative case study between Korea and Japan. Kobe, which suffered from the Great Hanshin-Awaji earthquake in 1995, was the study area. The city experienced an inadequate institutional system and lack of disaster management infrastructure at the time before the disaster. The study indicates that Korea volunteer fire fighters are not prepared sufficiently to tackle great disasters in terms of the supporting system, capacity and role by analyzing improvement plans of Japanese Volunteer Fire Fighters after Great East Japan earthquake in 2011. The results of the case study suggests improvements in the disaster management system to provide cooperation between the central government and local government, core task distribution, and community-based disaster management.

Safety Evaluation on Interaction between Track and Bridge in Continuous Welded Railway Bridge Considering Seismic Load (지진하중을 고려한 장대레일교량의 궤도-교량 상호작용에 대한 안전성 평가)

  • Shim, Yoon-Bo;Kim, Yun-Tae;Kim, Sang-Chel
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.40-48
    • /
    • 2016
  • To observe the rail-slab interaction in continuous welded railway(CWR) bridge when earthquake occurs, additional axial rail stresses and relative longitudinal displacements between rail and bridge deck were calculated with input of various load combinations and 3 different types of seismic loads to an analytical model. As results of analysis, it can be found that standard response spectrum proposed by Korea Rail(KR) network authority for earthquake design showed less additional axial rail stresses than allowable levels, but greater relative longitudinal displacement between rail and bridge deck, which means that adjustment of relative longitudinal displacement within a standard level is much more difficult than axial train stress. Additionally, if a large-scaled earthquake as occurred at Kobe, Japan comes up, then both of additional axial rail stress and relative displacement in rail-bridge deck may exceed allowable levels, which indicates to make proper design guides against sudden earthquake occurrence.

Optimum control system for earthquake-excited building structures with minimal number of actuators and sensors

  • He, Jia;Xu, You-Lin;Zhang, Chao-Dong;Zhang, Xiao-Hua
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.981-1002
    • /
    • 2015
  • For vibration control of civil structures, especially large civil structures, one of the important issues is how to place a minimal number of actuators and sensors at their respective optimal locations to achieve the predetermined control performance. In this paper, a methodology is presented for the determination of the minimal number and optimal location of actuators and sensors for vibration control of building structures under earthquake excitation. In the proposed methodology, the number and location of the actuators are first determined in terms of the sequence of performance index increments and the predetermined control performance. A multi-scale response reconstruction method is then extended to the controlled building structure for the determination of the minimal number and optimal placement of sensors with the objective that the reconstructed structural responses can be used as feedbacks for the vibration control while the predetermined control performance can be maintained. The feasibility and accuracy of the proposed methodology are finally investigated numerically through a 20-story shear building structure under the El-Centro ground excitation and the Kobe ground excitation. The numerical results show that with the limited number of sensors and actuators at their optimal locations, the predetermined control performance of the building structure can be achieved.

PCA-based neuro-fuzzy model for system identification of smart structures

  • Mohammadzadeh, Soroush;Kim, Yeesock;Ahn, Jaehun
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1139-1158
    • /
    • 2015
  • This paper proposes an efficient system identification method for modeling nonlinear behavior of civil structures. This method is developed by integrating three different methodologies: principal component analysis (PCA), artificial neural networks, and fuzzy logic theory, hence named PANFIS (PCA-based adaptive neuro-fuzzy inference system). To evaluate this model, a 3-story building equipped with a magnetorheological (MR) damper subjected to a variety of earthquakes is investigated. To train the input-output function of the PANFIS model, an artificial earthquake is generated that contains a variety of characteristics of recorded earthquakes. The trained model is also validated using the1940 El-Centro, Kobe, Northridge, and Hachinohe earthquakes. The adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. It is demonstrated from the training and validation processes that the proposed PANFIS model is effective in modeling complex behavior of the smart building. It is also shown that the proposed PANFIS produces similar performance with the benchmark ANFIS model with significant reduction of computational loads.

Influence of shear on seismic performance and failure mode of RC piers (전단이 RC 교각의 지진성능 및 파괴모드에 미치는 영향)

  • Lee, Do-Hyeong
    • The Journal of Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.53-63
    • /
    • 2004
  • In this paper, influence of shear on the seismic performance and failure mode of reinforced concrete piers subjected to earthquake loading is investigated. Comparative study has been carried out for reinforced concrete column tests to verify the shear-axial interaction model presented in this paper. Comparison shows that predicted shear hysteretic response agrees well with the test results. Also conducted is a nonlinear time-history analysis of a reinforced concrete bridge damaged by the Kobe earthquake using the current development. Displacement response for piers reveals that maximum displacement is considerably increased due to the effect of shear coupled with axial force variation, which leads to overall stiffness degradation and period elongation. It is therefore concluded that the response considering both shear and axial force gives better explanation regarding the seismic damage evaluation of reinforced concrete bridge piers.

  • PDF