• Title/Summary/Keyword: Knudsen number

Search Result 61, Processing Time 0.023 seconds

Performance Analysis of a Linear Micro-actuator Operated by Radiometric Phenomena in Rarefied Gas Flow Field (희박기체 상태의 라디오미터릭 효과에 의해 구동되는 선형 마이크로 액추에이터의 성능해석)

  • 황영규;허중식
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1394-1405
    • /
    • 2002
  • The performance of micro-actuators utilizing radiometric forces are studied numerically. The Knudsen number based on gas density and characteristic dimension is varied from near-continuum to highly rarefied conditions. Direct simulation Monte Carlo(DSMC) calculations have been performed to estimate the performance of the micro-actuators. In the present DSMC method, the variable hard sphere molecular model and no time counter technique are used to simulate the molecular collision kinetics. For simulation of diatomic gas flows, the Borgnakke-Larsen phenomenological model is adopted to redistribute the translational and internal energies.

Heat Transfer in a Micro-actuator Operated by Radiometric Phenomena

  • Heo Joong-Sik;Hwang Young-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.664-673
    • /
    • 2005
  • The heat transfer characteristics of rarefied flows in a micro-actuator are studied numerically. The effect of Knudsen number (Kn) on the heat transfer of the micro-actuator flows is also examined. The Kn based on gas density and characteristic dimension is varied from near-continuum to highly rarefied conditions. Direct simulation Monte Carlo calculations have been performed to estimate the performance of the micro-actuator. The results show that the magnitude of the temperature jump at the wall increases with Kn. Also, the heat transfer to the isothermal wall is found to increase significantly with Kn.

A Study on the Lond Characteristics of Air-Lublicated Hydrodynamic Wave Journal Bearing (공기윤활 웨이브 저어널 베어링의 부하 특성에 관한 연구)

  • 조성욱;임윤철
    • Tribology and Lubricants
    • /
    • v.17 no.1
    • /
    • pp.28-32
    • /
    • 2001
  • A new bearing concept, the wave journal bearing, has been developed to improve the static and dynamic performances of an air-lubricated hydrodynamic journal bearing. This concept features waves on bearing surface. In this study, we present the solution of the compressible Reynolds equation valid for arbitrary Knudsen numbers. Straight wave journal bearing is investigated numerically. The performances of straight wave bearing are compared to the plain journal bearing over relatively wide range of bearing number and eccentricity. The wave journal bearing offers better stability than the plain journal bearing under all bearing numbers covered in this study. The bearing load and stability characteristics are dependent on the geometric parameters such as the amplitude and the starting point of the wave relative to the applied load. Under the condition of Knudsen number>0.01, we can not ignore the effect of slip for Journal bearing.

Analysis of two-dimensional flow fields in the multi-stage turbomolecular pump using the DSMC method (DSMC법을 이용한 터보분자펌프 다단 익렬의 2차원 유동장 해석)

  • 황영규;허중식;박종윤
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.83-94
    • /
    • 2000
  • The performance of a turbomolecular pump(TMP) in both molecular and transition flow regions is predicted by the numerical solutions of the Boltzmann equation obtained by the direct simulation Monte Carlo method. The compression characteristics of the TMP are investigated for a wide range of the Knudsen number( Kn ). The maximum compression ratios strongly depend on Kn in transition region, while do they weakly on Kn in free molecular flow region. The present numerical results of the single blade row in both molecular and transition regions are used to predict the overall performance of a TMP, which has three kinds of blade with 24-rows.

  • PDF

Thermal-magneto-mechanical stability analysis of single-walled carbon nanotube conveying pulsating viscous fluid

  • R. Selvamani;M. Mahaveer Sree Jayan;Marin Marin
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.21-40
    • /
    • 2023
  • In thisstudy, the vibration problem ofthermo elastic carbon nanotubes conveying pulsating viscous nano fluid subjected to a longitudinal magnetic field is investigated via Euler-Bernoulli beam model. The controlling partial differential equation of motion is arrived by adopting Eringen's non local theory. The instability domain and pulsation frequency of the CNT is obtained through the Galerkin's method. The numerical evaluation of thisstudy is devised by Haar wavelet method (HWM). Then, the proposed model is validated by analyzing the critical buckling load computed in presentstudy with the literature. Finally, the numerical calculation ofsystem parameters are shown as dispersion graphs and tables over non local parameter, magnetic flux, temperature difference, Knudsen number and viscous parameter.

Analysis of rarefied compressible boundary layers in transition regime (천이영역의 희박기체 압축성 경계층 해석)

  • Choe, Seo-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.509-517
    • /
    • 1997
  • Results of flat plate compressible boundary layer calculation, based on discrete formulation of DSMC method, are presented in low Mach number and low Knudsen number range. The free stream is a uniform flow of pure nitrogen at various Mach numbers in low pressures (i.e. rarefied gas). Complete thermal accommodation and diffuse molecular reflections are used as the wall boundary condition, replacing unreal no-slip condition used in continuum calculations. In the discrete formulation of DSMC method, there is no need to use ad hoc assumptions on transport properties like viscosity and thermal conductivity, instead viscosity is calculated from values of other field variables (velocity and shear stress). Also the results are compared with existing self-similar continuum solutions. In all Mach number cases computed, velocity slip is most pronounced in regions near the leading edge where continuum formulation renders the solution singular. As the boundary layer develops further downstream, velocity slips asymptote to values that are between 10 to 20% of the magnitude of free stream velocity. When the free stream number density is reduced, so the gas more rarefied, the velocity slip increases as expected.

Flow Field across Multiple Fluid Sphere in the Low Kundsen Number Regime (저 누드센 영역에서의 복합 유체구의 유동장)

  • 정창훈;이규원
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.397-398
    • /
    • 2003
  • 대기 중 분진을 제거하는 방식으로 여과 이론을 적용할 수 있는 경우는 섬유 여과기, 입자상 여과기, 액적에 의한 습식 세정기 그리고 기포를 이용한 분진 제거 방법 등을 들 수 있다. 이러한 여과 원리를 이용한 집진 설비를 설계하는데 있어, 액적 또는 기포 주위의 유동장을 정확히 파악하는 것은 매우 중요하다. 특히, 포집구의 크기가 작아지고 화학적으로 반응성을 갖는 고온의 함진가스가 유입되는 경우 및 저압에서 운영되는 경우에 누드센수(Knudsen number)의 영향을 무시할 수 없는데 이러한 영역을 저 누드센 영역(low Kundsen number regime)이라고 한다(Lee et al., 1978). (중략)

  • PDF

Numerical Analysis of Gas Flows in Microchannels in Series (직렬 미소채널 기체유장의 수치해석)

  • Chung Chan Hong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.221-231
    • /
    • 2004
  • A kinetic theory analysis is made of low-speed gas flows in a microfluidic system consisted of three microchannels in series. The Boitzmann equation simplified by a collision model is solved by means of a finite difference approximation with the discrete ordinate method. For the evaluation of the present method results are compared with those from the DSMC method and an analytical solution of the Navier-Stokes equations with slip boundary conditions. Calculations are made for flows at various Knudsen numbers and pressure ratios across the channel. The results compared well with those from the DSMC method. It is shown that the analytical solution of the Navier-Stokes equations with slip boundary conditions which is suited fur fully developed flows can give relatively good results. In predicting the geometrically complex flows up to a Knudsen number of about 0.06. It is also shown that the present method can be used to analyze extremely low-speed flow fields for which the DSMC method is Impractical.

  • PDF

The flow Analysis in a Microchannel using the Lattice Boltzmann Method (격자볼츠만방법(LBM)을 이용한 마이크로채널 내의 유동해석)

  • Cho K. J.;Jeong J. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.79-82
    • /
    • 2004
  • As an alternative numerical method, the lattice Boltzmann method (LBM) is used to simulate a 2-dimensional pressure driven microchannel flow which comes from frequently in MEMS problems. The flow is assumed to be isothermal ideal gas flow. The flow field is calculated with various Knudsen numbers, pressure ratios and aspect ratios of the microchannel. The LBM can show the fundamental characteristics in microchannel flow such as velocity slip and nonlinear pressure drop.

  • PDF

Damping Characteristics of a Microcantilever for Radio Frequency-microelectromechanical Switches (RF-MEMS 스위치용 마이크로 외팔보의 감쇠특성)

  • Lee, Jin-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.553-561
    • /
    • 2011
  • A theoretical approach is carried out to predict the quality factors of flexible modes of a microcantilever on a squeeze-film. The frequency response function of an inertially-excited microcantilever beam is derived using an Euler-Bernoulli beam theory. The external force due to squeeze-film phenomenon is developed from the Reynolds equation. Slip boundary conditions are employed at the interfaces between the fluid and the structure to consider the gas rarefaction effect, and pressure boundary condition at both ends of fluid analysis region is enhanced to increase the exactness of predicted quality factors. To the end, an approximate equation is derived for the first bending mode of the microcantilever. Using the approximate equation, the quality factors of the second and third bending modes are calculated and compared with experimental results of previously reported work. The comparison shows the feasibility of the current approach.