• Title/Summary/Keyword: Knowledge of Computer Science

Search Result 1,029, Processing Time 0.027 seconds

Pre-service Special Education Teachers' Knowledge and Perceptions of Using Computer Technology in Teaching from PST Perspectives

  • Alhwaiti, Mohammed M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.169-174
    • /
    • 2022
  • The study aims to discover the scope of pre-service special education teachers' knowledge and perceptions of using computer technology in teaching students with disabilities from a pre-service teacher (PST) perspective in light of the gender and sub-major variables. The sample consisted of 84 MEd students/pre-service teachers at the Department of Special Education, Faculty of Education, Umm Al-Qura University. The descriptive analytical approach is used due to its relevance to the study. A survey consisting of the participant's basic information section and 12 statements was sent to a set of pre-service teachers. Findings showed that pre-service special education teachers had an overall high knowledge of using computer technology (M=3.93). Findings also indicated that there were no gender- or major-related statistically significant differences (α = 0.05), in pre-service special education students' knowledge and perceptions of using computer technology.

A Knowledge-Based Technical Support System for ECRC

  • Shin, J.K.;Hwang, J.W.
    • Proceedings of the CALSEC Conference
    • /
    • 1998.10a
    • /
    • pp.129-140
    • /
    • 1998
  • ㆍ ECRC ㆍ Knowledge Management ㆍ KM technologies ㆍ KBTS System -Mistakes KMS -Discussion KMS -Distinguished Features(omitted)

  • PDF

The Development of Video Based System for Sharing Design Knowledge (동영상 기반 디자인 지식 공유 시스템 개발)

  • Han, Hyeon-Young;Park, Woo-Young;Lee, Joon-ho;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.15 no.3
    • /
    • pp.313-318
    • /
    • 2017
  • In general, users of design software such as Photoshop, search for information online when they want to obtain related knowledge. However, it is very difficult to find the exact information they want about designs because available knowledge sharing systems are very broad in what they manage, and it is rare that such systems would provide any design-specific Q&A or exchange of information functionality. In the paper we development a video based system for sharing design knowledge that supplies Q&A, lecture, knowledge trade function etc. utilizing multimedia like text, image and video reflecting the characteristics of design knowledge. The system are expected to contribute to the competitiveness of products through sharing design knowledge. In the near future the system will need to expand to a framework that can be shared with a variety of knowledge, as well as design knowledge.

Enhancing Open-Ended Knowledge Tracing with Prefix-Tuning (Prefix-Tuning 기반 Open-Ended Knowledge Tracing 모델 연구)

  • Suhyune Son;Myunghoon Kang;Aram So;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.672-676
    • /
    • 2023
  • 지식 추적 (knowledge tacing)은 주어진 학습자의 과거 문제 해결 기록을 기반으로 학습자의 지식 습득 정도를 파악하여 목표 문제에 대한 정답 여부를 예측하는 것을 목표로 한다. 이전 연구에서는 이진 분류 기반의 모델을 사용하여 정답 유무만 예측하였기 때문에 학습자의 답변에 존재하는 정보를 활용하지 못한다. 최근 연구에서는 이를 생성 태스크로 변환하여 컴퓨터과학 분야에서 프로그래밍 질문에 대한 지식 추정을 수행하는 open-ended knowledge tracing (OKT)이 제안되었다. 하지만 최적의 OKT 모델에 대한 연구는 진행되지 않았으며 따라서 본 논문에서는 시간에 따라 변화하는 학습자의 지식 상태에 따라 답변 생성을 조정하는 새로운 OKT 방법론을 제안한다. 실험을 본 논문에서 제안하는 방법론의 우수성과 효율성을 증명한다.

  • PDF

Managing Complexity in Object-Oriented Analysis

  • Ine, So-Ran;Youn, Cheong;Misbah, Uddin Mirza;Lee, Kwon-Il;Cha, Seung-Hoon;Byoun, Bo-Gyun;Bae, Doo-Hwan
    • ETRI Journal
    • /
    • v.20 no.2
    • /
    • pp.192-213
    • /
    • 1998
  • The current approaches in Object-Oriented Analysis have limitations on modeling complex real world systems because they require priori knowledge about objects and their interactions before applying them. This may be practical in small systems and systems with clear domain knowledge, but not in large real world systems with unclear domain knowledge. Our approach uses a stepwise refinement technique in a top-down manner to the Object-Oriented Analysis stage with the application of use cases. This approach is especially good for new areas where we do not know all the information in advance. We present the approach with an example of its application to the B-ISDN service modeling and distributed systems.

  • PDF

EXPERT KNOWLEDGE GATING MECHANISM IN THE HIERARCHICAL MODULAR SYSTEM

  • Shim, Jeong-Yon;Hong, You-Sik
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.288-291
    • /
    • 2003
  • For the purpose of building the more efficient knowledge learning system, it is very important to make a good structure of the knowledge system first of all. The well designed knowledge system can make the stored knowledge to be easily accessed for knowledge acquisition and extraction. Expert knowledge can also play a good role for controlling. Accordingly, in this paper we propose the Hierarchical modular system with expert knowledge gating mechanism. This system consists of the mechanisms for knowledge acquisition, constructing the associative memory, knowledge inference and extraction according to the expert knowledge gating mechanism. We applied this system to the medical diagnostic area for classifying Virus(coxackie virus, echovirus, cold), Rhinitis(Nonallergic, allergic) and tested with symptom data

  • PDF

BDI Architecture Based on XML for Intelligent Multi-Agent Systems

  • Lee, Sang-wook;Yun, Ji-hyun;Kim, Il-kon;Hune Cho
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.511-515
    • /
    • 2001
  • Many intelligent agent systems are known to incorporate BDI architecture for cognitive reasoning. Since this architecture contains all the knowledge of world model and reasoning rule, it is very complex and difficult to handle. This paper describes a methodology to design and implement BDI architecture, BDIAXml based on XML for multi-agent systems. This XML-based BDI architecture is smaller than any other BDI architecture because it separates knowledge for reasoning from domain knowledge and enables knowledge sharing using XML technology. Knowledge for BDI mental state and reasoning is composed of specific XML files and these XML files are stored into a specific knowledge server. Most systems using BDIAxml architecture can access knowledge from this server. We apply this BDIAXml system to domain of Hospital Information System and show that this architecture performs more efficiently than other BDI architecture system in terms of knowledge sharing, system size, and ease of use.

  • PDF

Accuracy Improvement of Self-knowledge Learning by Filtering Triple (트리플 필터링을 통한 한국어 자가 지식 학습 정확률 향상)

  • Lee, Jisu;Kim, Kyounghun;Choi, Su Jeong;Park, Seong-Bae;Park, Se-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.174-177
    • /
    • 2015
  • 자가 지식 학습 프레임워크는 자연어 텍스트에서 지식 트리플을 생성하기 위한 방법 중 하나로, 문장의 의존 관계 트리 상에서 주어 개체와 목적어 개체 사이의 관계를 패턴으로 학습해 이 패턴을 바탕으로 새로운 지식 트리플을 생성한다. 그러나 이 방법은 의존 관계 트리를 생성하는 도구의 성능에 영향을 받을 뿐만 아니라 생성된 지식 트리플을 반복적으로 사용하는 자가 지식 학습의 특성상 오류가 누적될 가능성이 있다. 이러한 문제점을 해결하기 위해서 본 논문에서는 자가 지식 학습 프레임워크에서 생성된 지식 트리플을 TransR 신뢰도 함수를 사용해 신뢰도 값을 측정하여 그 값에 따라 지식 트리플을 필터링하는 방법을 제안한다. 실험 결과에 따르면 필터링 된 지식 트리플들이 그렇지 않은 지식 트리플들에 비하여 더 높은 정확률을 보여주어, 제안한 방법이 자가 지식 학습 프레임워크의 정확률 향상에 효과적임을 증명하였다.

  • PDF

Design and Implementation of Knowledge Base System for Fault Diagnosis (고장진단을 위한 지식기반 시스템의 설계 및 구현)

  • Jeon, Keun-Hwan;Shin, Sung-Yun;Shin, Jeong-Hun;Lee, Yang-Won;Ryu, Keun-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.6
    • /
    • pp.57-69
    • /
    • 2001
  • Expert system is one of AI area. It simulates the human's way of thinking to give solutions of problem in many applications. Most expert system consists of many components such as inference engine, knowledge base, and so on. Especially the performance of expert system depend on the control of efficiency of inference engine. Inference engine has to get features; first, if possible to minimize restrictions when it constructed the knowledge base. second, it has to serve various kinds of inferencing methods. In this paper we propose knowledge scheme for representing domain knowledge in ease, knowledge implementation technique for inferencing, and integrated knowledge-base engine with blackboard and inference engine. And we describe a expert system prototype that implemented in this paper using proposed methods, it perform diagnose about heavy industrial device. The fault diagnosis system prototype has been studied in this paper will be practical foundation in the research area of knowledge based system.

  • PDF

Multi-channel Long Short-Term Memory with Domain Knowledge for Context Awareness and User Intention

  • Cho, Dan-Bi;Lee, Hyun-Young;Kang, Seung-Shik
    • Journal of Information Processing Systems
    • /
    • v.17 no.5
    • /
    • pp.867-878
    • /
    • 2021
  • In context awareness and user intention tasks, dataset construction is expensive because specific domain data are required. Although pretraining with a large corpus can effectively resolve the issue of lack of data, it ignores domain knowledge. Herein, we concentrate on data domain knowledge while addressing data scarcity and accordingly propose a multi-channel long short-term memory (LSTM). Because multi-channel LSTM integrates pretrained vectors such as task and general knowledge, it effectively prevents catastrophic forgetting between vectors of task and general knowledge to represent the context as a set of features. To evaluate the proposed model with reference to the baseline model, which is a single-channel LSTM, we performed two tasks: voice phishing with context awareness and movie review sentiment classification. The results verified that multi-channel LSTM outperforms single-channel LSTM in both tasks. We further experimented on different multi-channel LSTMs depending on the domain and data size of general knowledge in the model and confirmed that the effect of multi-channel LSTM integrating the two types of knowledge from downstream task data and raw data to overcome the lack of data.