Enhancing Open-Ended Knowledge Tracing with Prefix-Tuning

Prefix-Tuning 기반 Open-Ended Knowledge Tracing 모델 연구

  • Suhyune Son (Department of Computer Science and Engineering, Korea University) ;
  • Myunghoon Kang (Department of Computer Science and Engineering, Korea University) ;
  • Aram So (Human-inspired AI Research) ;
  • Heuiseok Lim (Department of Computer Science and Engineering, Korea University)
  • Published : 2023.10.12

Abstract

지식 추적 (knowledge tacing)은 주어진 학습자의 과거 문제 해결 기록을 기반으로 학습자의 지식 습득 정도를 파악하여 목표 문제에 대한 정답 여부를 예측하는 것을 목표로 한다. 이전 연구에서는 이진 분류 기반의 모델을 사용하여 정답 유무만 예측하였기 때문에 학습자의 답변에 존재하는 정보를 활용하지 못한다. 최근 연구에서는 이를 생성 태스크로 변환하여 컴퓨터과학 분야에서 프로그래밍 질문에 대한 지식 추정을 수행하는 open-ended knowledge tracing (OKT)이 제안되었다. 하지만 최적의 OKT 모델에 대한 연구는 진행되지 않았으며 따라서 본 논문에서는 시간에 따라 변화하는 학습자의 지식 상태에 따라 답변 생성을 조정하는 새로운 OKT 방법론을 제안한다. 실험을 본 논문에서 제안하는 방법론의 우수성과 효율성을 증명한다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 및 정보통신기술기획평가원의 대학ICT연구센터지원사업의 연구결과로 수행되었음(IITP-2022-2018-0-01405). 이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2021R1A6A1A03045425). 본 연구는 과학기술정보통신부 및 정보통신기획평가원의 ICT명품인재양성 사업의 연구결과로 수행되었음 (IITP-2023-2020-0-01819)