• Title/Summary/Keyword: Knowledge generation

Search Result 780, Processing Time 0.035 seconds

LIGHT WATER REACTOR (LWR) SAFETY

  • Sehgal Bal Raj
    • Nuclear Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.697-732
    • /
    • 2006
  • In this paper, a historical review of the developments in the safety of LWR power plants is presented. The paper reviews the developments prior to the TMI-2 accident, i.e. the concept of the defense in depth, the design basis, the large LOCA technical controversies and the LWR safety research programs. The TMI-2 accident, which became a turning point in the history of the development of nuclear power is described briefly. The Chernobyl accident, which terrified the world and almost completely curtailed the development of nuclear power is also described briefly. The great international effort of research in the LWR design-base and severe accidents, which was, respectively, conducted prior to and following the TMI-2 and Chernobyl accidents is described next. We conclude that with the knowledge gained and the improvements in plant organisation/management and in the training of the staff at the presently-installed nuclear power stations, the LWR plants have achieved very high standards of safety and performance. The Generation 3+LWR power plants, next to be installed, may claim to have reached the goal of assuring the safety of the public to a very large extent. This review is based on the historical developments in LWR safety that occurred primarily in USA, however, they are valid for the rest of the Western World. This review can not do justice to the many fine contributions that have been made over the last fifty years to the cause of LWR safety. We apologize if we have not mentioned them. We also apologize for not providing references to many of the fine investigations, which have contributed towards LWR safety earning the conclusions that we describe just above.

Overseas Research and Development Activities of Korean ICT enterprises in Emerging Countries

  • Seo, Jeongseon
    • STI Policy Review
    • /
    • v.3 no.2
    • /
    • pp.79-91
    • /
    • 2012
  • With the globalisation of the world's economies and the increasing role of multinational corporations in the generation of knowledge, global research and development (R&D) activities in emerging countries are following a new trend. This paper describes case studies of two large companies and discussion of the motives (demand vs. supply) and tasks (demand-driven vs. supply-driven) of R&D activities outside their home country. This work is based on an analysis of four overseas R&D units of two Korean ICT companies - here, ICT refers to goods and services in the information technology and communication technology fields - in India and China. The research findings are as follows: (1) The overseas R&D activities of Korean ICT enterprises in emerging countries may be driven by a combination of demand and supply factors of host countries; and (2) Korean overseas R&D centres in emerging countries may need to carry out both demand- and supply-driven tasks in view of the overlap between demand and supply factors of the host countries. Based on the results of this research, the following policy implications can be drawn for encouraging more effective overseas R&D activities of Korean enterprises in emerging countries. First, the government needs to expand the support systems so that enterprises can manage local R&D centres more effectively and actively use the variety of local support systems and useful information. Second, the government needs to expand the support systems so that the overseas R&D centres of Korean enterprises revitalise collaborations with locally excellent universities and research institutions.

Exploration of the Composite Properties of Linear Functions from Instrumental Genesis of CAS and Mathematical Knowledge Discovery (CAS의 도구발생과 수학 지식의 발견 관점에서 고찰한 일차함수의 합성 성질 탐구)

  • Kim, Jin-Hwan;Cho, Cheong-Soo
    • Communications of Mathematical Education
    • /
    • v.24 no.3
    • /
    • pp.611-626
    • /
    • 2010
  • The purpose of this study is to explore the composite properties of linear functions using CAS calculators. The meaning and processes in which technological tools such as CAS calculators generated to instrument are reviewed. Other theoretical topic is the design of an exploring model of observing-conjecturing-reasoning and proving using CAS on experimental mathematics. Based on these background, the researchers analyzed the properties of the family of composite functions of linear functions. From analysis, instrumental capacity of CAS such as graphing, table generation and symbolic manipulation is a meaningful tool for this exploration. The result of this study identified that CAS as a mediator of mathematical activity takes part of major role of changing new ways of teaching and learning school mathematics.

Compact and Broadband 90° Coupler Using a Metamaterial (메타 물질을 이용한 초소형, 광대역 90° 커플러)

  • Kim, Hong-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.844-847
    • /
    • 2012
  • By using LHTL(Left-Handed Transmission Line) which is a form of a metamaterial and conventional RHTL (Right-Handed Transmission Line), we designed, fabricated and tested a broadband $90^{\circ}$ coupler which is a basic circuit for I-Q vector signal generation. Synthetic LHTL and RHTL were implemented with capacitors and inductors only, that the size is minimized. Also, by implementing a Wilkinson power divider which is required for the suggested circuit using a synthetic RHTL, the size of whole circuit is only $11mm{\times}12mm$. For the frequency range 0.8~1.25 GHz, the phase difference at the outputs maintained $90^{\circ}{\pm}5^{\circ}$ and thus, a broadband $90^{\circ}$ coupler could be made in a compact form. for the same frequency range, the insertion loss is less than 1.6 dB and return loss is more than 10.1 dB. To the best of our knowledge, this is the smallest and broadband $90^{\circ}$ coupler for the frequency range and if the circuit is made with MMIC(Monolithic Microwave Integrated Circuit) technology, the size will be reduced much further.

Genetic Algorithm Based Attribute Value Taxonomy Generation for Learning Classifiers with Missing Data (유전자 알고리즘 기반의 불완전 데이터 학습을 위한 속성값계층구조의 생성)

  • Joo Jin-U;Yang Ji-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.133-138
    • /
    • 2006
  • Learning with Attribute Value Taxonomies (AVT) has shown that it is possible to construct accurate, compact and robust classifiers from a partially missing dataset (dataset that contains attribute values specified with different level of precision). Yet, in many cases AVTs are generated from experts or people with specialized knowledge in their domain. Unfortunately these user-provided AVTs can be time-consuming to construct and misguided during the AVT building process. Moreover experts are occasionally unavailable to provide an AVT for a particular domain. Against these backgrounds, this paper introduces an AVT generating method called GA-AVT-Learner, which finds a near optimal AVT with a given training dataset using a genetic algorithm. This paper conducted experiments generating AVTs through GA-AVT-Learner with a variety of real world datasets. We compared these AVTs with other types of AVTs such as HAC-AVTs and user-provided AVTs. Through the experiments we have proved that GA-AVT-Learner provides AVTs that yield more accurate and compact classifiers and improve performance in learning missing data.

Microstructures and Hall Properties of p-type Zno Thin Films with Ampouele-tube Method of P and As (Ampoule-tube 법을 이용한 P와 As 도핑 p형 ZnO 박막의 미세구조와 Hall 특성)

  • So, Soon-Jin;Lim, Keun-Young;Yoo, In-Sung;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.141-142
    • /
    • 2005
  • To investigate the ZnO thin films which is interested in the next generation of short wavelength LEDs and Lasers, our ZnO thin films were deposited by RF sputtering system. At sputtering process of ZnO thin films, substrate temperature, work pressure respectively is $300^{\circ}C$ and 5.2 mTorr, and the purity of target is ZnO 5N. The thickness of ZnO thin films was about $1.9{\mu}m$ at SEM analysis after sputtering process. Phosphorus (P) and arsenic (As) were diffused into ZnO thin films sputtered by RF magnetron sputtering system in ampoule tube which was below $5\times10^{-7}$ Torr. The dopant sources of phosphorus and arsenic were $Zn_3P_2$ and $ZnAs_2$. Those diffusion was perform at 500, 600, and $700^{\circ}C$ during 3hr. We find the condition of p-type ZnO whose diffusion condition is $700^{\circ}C$, 3hr. Our p-type ZnO thin film has not only very high carrier concentration of above $10^{19}/cm^3$ but also low resistivity of $5\times10^{-3}{\Omega}cm$.

  • PDF

Selective Etching of Magnetic Layer Using CO/$NH_3$ in an ICP Etching System

  • Park, J.Y.;Kang, S.K.;Jeon, M.H.;Yeom, G.Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.448-448
    • /
    • 2010
  • Magnetic random access memory (MRAM) has made a prominent progress in memory performance and has brought a bright prospect for the next generation nonvolatile memory technologies due to its excellent advantages. Dry etching process of magnetic thin films is one of the important issues for the magnetic devices such as magnetic tunneling junctions (MTJs) based MRAM. CoFeB is a well-known soft ferromagnetic material, of particular interest for magnetic tunnel junctions (MTJs) and other devices based on tunneling magneto-resistance (TMR), such as spin-transfer-torque MRAM. One particular example is the CoFeB - MgO - CoFeB system, which has already been integrated in MRAM. In all of these applications, knowledge of control over the etching properties of CoFeB is crucial. Recently, transferring the pattern by using milling is a commonly used, although the redeposition of back-sputtered etch products on the sidewalls and the low etch rate of this method are main disadvantages. So the other method which has reported about much higher etch rates of >$50{\AA}/s$ for magnetic multi-layer structures using $Cl_2$/Ar plasmas is proposed. However, the chlorinated etch residues on the sidewalls of the etched features tend to severely corrode the magnetic material. Besides avoiding corrosion, during etching facets format the sidewalls of the mask due to physical sputtering of the mask material. Therefore, in this work, magnetic material such as CoFeB was etched in an ICP etching system using the gases which can be expected to form volatile metallo-organic compounds. As the gases, carbon monoxide (CO) and ammonia ($NH_3$) were used as etching gases to form carbonyl volatiles, and the etched features of CoFeB thin films under by Ta masking material were observed with electron microscopy to confirm etched resolution. And the etch conditions such as bias power, gas combination flow, process pressure, and source power were varied to find out and control the properties of magnetic layer during the process.

  • PDF

Shprintzen-Goldberg syndrome with a novel missense mutation of SKI in a 6-month-old boy

  • Jeon, Min Jin;Park, Seul Gi;Kim, Man Jin;Lim, Byung Chan;Kim, Ki Joong;Chae, Jong Hee;Kim, Soo Yeon
    • Journal of Genetic Medicine
    • /
    • v.17 no.1
    • /
    • pp.43-46
    • /
    • 2020
  • The Shprintzen-Goldberg syndrome (SGS) is an extremely rare genetic disorder caused by heterozygous variant in SKI. SGS is characterized by neurodevelopmental impairment with skeletal anomaly. Recognition of SGS is sometimes quite challenging in practice because it has diverse clinical features involving skeletal, neurological, and cardiovascular system. Here we report a case of a 6-month-old boy who initially presented with developmental delay and marfanoid facial features including prominent forehead, hypertelorism, high arched palate and retrognathia. He showed motor developmental delay since birth and could not control his head at the time of first evaluation. His height was above 2 standard deviation score. Arachnodactyly, hypermobility of joints, skin laxity, and pectus excavatum were also noted. Sequencing for FBN1 was negative, however, a novel missense variant, c.350G>A in SKI was identified by sequential whole exome sequencing. To our knowledge, this is the first case with SGS with phenotypic features of SGS overlapping with those of the Marfan syndrome, diagnosed by next generation sequencing in Korea.

Fuzzy Neural System Modeling using Fuzzy Entropy (퍼지 엔트로피를 이용한 퍼지 뉴럴 시스템 모델링)

  • 박인규
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.2
    • /
    • pp.201-208
    • /
    • 2000
  • In this paper We describe an algorithm which is devised for 4he partition o# the input space and the generation of fuzzy rules by the fuzzy entropy and tested with the time series prediction problem using Mackey-Glass chaotic time series. This method divides the input space into several fuzzy regions and assigns a degree of each of the generated rules for the partitioned subspaces from the given data using the Shannon function and fuzzy entropy function generating the optimal knowledge base without the irrelevant rules. In this scheme the basic idea of the fuzzy neural network is to realize the fuzzy rules base and the process of reasoning by neural network and to make the corresponding parameters of the fuzzy control rules be adapted by the steepest descent algorithm. The Proposed algorithm has been naturally derived by means of the synergistic combination of the approximative approach and the descriptive approach. Each output of the rule's consequences has expressed with its connection weights in order to minimize the system parameters and reduce its complexities.

  • PDF

An Enhanced Instantaneous Circulating Current Control for Reactive Power and Harmonic Load Sharing in Islanded Microgrids

  • Lorzadeh, Iman;Abyaneh, Hossein Askarian;Savaghebi, Mehdi;Lorzadeh, Omid;Bakhshai, Alireza;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1658-1671
    • /
    • 2017
  • To address the inaccurate load demand sharing problems among parallel inverter-interfaced voltage-controlled distributed generation (DG) units in islanded microgrids (MGs) with different DG power ratings and mismatched feeder impedances, an enhanced voltage control scheme based on the active compensation of circulating voltage drops is proposed in this paper. Using the proposed strategy, reactive power and harmonic currents are shared accurately and proportionally without knowledge of the feeder impedances. Since the proposed local controller consists of two well-separated fundamental and harmonic voltage control branches, the reactive power and harmonic currents can be independently shared without having a remarkable effect on the amplitude or quality of the DGs voltage, even if nonlinear (harmonic) loads are directly connected at the output terminals of the units. In addition, accurate load sharing can also be attained when the plug-and-play performance of DGs and various loading conditions are applied to MGs. The effects of communication failures and latency on the performance of the proposed strategy are also explored. The design process of the proposed control system is presented in detail and comprehensive simulation studies on a three-phase MG are provided to validate the effectiveness of the proposed control method.