• 제목/요약/키워드: Knowledge flow

검색결과 593건 처리시간 0.021초

패스파인더 네트워크 분석에 의한 ASIST Proceedings 인용흐름 연구 (Citation Flow of the ASIST Proceeding Using Pathfinder Network Analysis)

  • 김희정
    • 정보관리학회지
    • /
    • 제25권2호
    • /
    • pp.157-166
    • /
    • 2008
  • 본 연구에서는 ASIST 프로시딩을 인용한 저널들을 중심으로 패스파인더 네트워크 분석을 수행함으로써, ASIST 프로시딩의 지식이 어떠한 주제영역을 중심으로 네트워크 구조를 형성하고 있는지를 확인하는 데에 그 목적이 있다. 이를 위하여 Scopus 데이터베이스에서 검색한 240개의 문헌을 대상으로 완전연결 클러스터링 기법을 통하여 16개 클러스터를 도출하였으며, MDS 및 패스파인더 네트워크 분석을 통하여 지식 네트워크를 매핑하였다. 지금까지 대부분의 경우 학술지를 대상으로 수행되어 온 네트워크 분석을 프로시딩을 대상으로 분석을 시도하였으며, 분석결과 ASIST 프로시딩은 정보추구행태 및 탐색과 인터페이스, 계량서지학 및 지식관리 주제영역의 논문이 타 문헌에 활발하게 소비되고 있음을 확인할 수 있었다.

Good modeling practice of water treatment processes

  • Suvalija, Suvada;Milisic, Hata;Hadzic, Emina
    • Coupled systems mechanics
    • /
    • 제11권1호
    • /
    • pp.79-91
    • /
    • 2022
  • Models for water treatment processes include simulation, i.e., modelling of water quality, flow hydraulics, process controls and design. Water treatment processes are inherently dynamic because of the large variations in the influent water flow rate, concentration and composition. Moreover, these variations are to a large extent not possible to control. Mathematical models and computer simulations are essential to describe, predict and control the complicated interactions of the water treatment processes. An accurate description of such systems can therefore result in highly complex models, which may not be very useful from a practical, operational point of view. The main objective is to combine knowledge of the process dynamics with mathematical methods for processes estimation and identification. Good modelling practice is way to obtain this objective and to improve water treatment processes(its understanding, design, control and performance- efficiency). By synthesize of existing knowledge and experience on good modelling practices and principles the aim is to help address the critical strategic gaps and weaknessesin water treatment models application.

Dynamics of Facial Subcutaneous Blood Flow Recovery in Post-stress Period

  • Sohn, Jin-Hun;Estate M. Sokhadze;Lee, Kyung-Hwa;Lee, Jong-Mi;Park, Mi-Kyung;Park, Ji-Yeon
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2000년도 추계학술대회 논문집
    • /
    • pp.62-68
    • /
    • 2000
  • The aim of the study was to compare effects of music and white noise on the recovery of facial blood flow parameters after stressful visual stimulation. Twenty-nine subjects participated in the experiment. Three visual stimulation sessions with aversive slides (the IAPS, disgust category) were followed by subjectively "pleasant" (in the first session), "sad" music (in the second ), and white noise (in the third ). Order of sessions was counterbalanced. Blood flow parameters (peak blood flow, blood flow velocity, blood volume) were recorded by Laser Doppler single-crystal system (LASERFLO BPM 403A) interfaced through BIOPAC 100WS with AcqKnowledge software (v.3.5) and analyzed in off-line mode. Aversive visual stimulation itself decreased blood flow and velocity in all 3 sessions. Both "pleasant" and "sad" music led to the restoration of baseline levels in all blood flow parameters, while noise did not enhance recovery process. Music on post-stress recovery had significant change in peak blood flow and blood flow velocity, but not in blood volume measures. Pleasant music had bigger effects on post-stress recovery in peak blood flow and flow velocity than white noise. It reveals that music exerted positive modulatory effects on facial vascular activity measures during recovery from negative emotional state elicited by stressful slides. Results partially support the undoing hypothesis of Levenson (1994), which states that positive emotions may facilitate process of recovery from negative emotions.

  • PDF

The Starting Characteristics of the Steady Ejector-Diffuser System

  • Gopalapillai, Rajesh;Kim, Heuy-Dong;Matsuo, Shigeru;Setoguchi, Toshiaki
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.680-685
    • /
    • 2008
  • The ejector is a simple device which can transport a low-pressure secondary flow by using a high-pressure primary flow. In general, it consists of a primary driving nozzle, a mixing section, and a diffuser. The ejector system entrains the secondary flow through a shear action generated by the primary jet. Until now, a large number of researches have been made to design and evaluate the ejector systems, where it is assumed that the ejector system has an infinite secondary chamber which can supply mass infinitely. However, in almost all of the practical applications, the ejector system has a finite secondary chamber implying steady flow can be possible only after the flow inside ejector has reached an equilibrium state after the starting process. To the authors' best knowledge, there are no reports on the starting characteristics of the ejector systems and none of the works to date discloses the detailed flow process until the secondary chamber flow reaches an equilibrium state. The objective of the present study is to investigate the starting process of an ejector-diffuser system. The present study is also planned to identify the operating range of ejector-diffuser systems where the steady flow assumption can be applied without uncertainty. The results obtained show that the one and only condition in which an infinite mass entrainment is possible is the generation of a recirculation zone near the primary nozzle exit. The flow in the secondary chamber attains a state of dynamic equilibrium at this point.

  • PDF

Review on Gas-Voiding Models for HCDA(Hypothetical Core Disruptive Accident) Initiating Phase in LMR Analysis (I)

  • Chang, W.P.;Kwon, Y.M.;Hahn, D.H.;Suk, S.D.
    • Nuclear Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.51-65
    • /
    • 1999
  • The present review report introduces the existing analysis codes and physical modeling of two-phase flow associated with initiating event of HCDA in Liquid Metal Reactors for the effective study in the future, because the related research has not been systematically carried out in Korea compared with other areas. The description in this report is specifically addressed to the results yielded from careful review of the technical concepts on the two-phase flow modeling in the SAS2A code which was developed in ANL. The report is prepared in 2 parts based on the definite physical phenomena. The liquid slug and gas behavior models are main representations in the part (I) and (II), respectively. In this regard, it is expected that this report provide a fundamental knowledge on the two-phase flow model in LMR and, thus, contribute to establishment of the necessary HCDA analysis technology concerned with the LMR development in Korea.

  • PDF

대형버스 바디모델의 후류특성 및 후미 스포일러 효과에 관한 해석적 고찰 (A Numerical Investigation on the Wake Flow Characteristics and Rear-Spoiler Effect of a Large-Sized Bus Body)

  • 김민호;국종영;천인범
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.126-133
    • /
    • 2003
  • The aerodynamic characteristics of automobiles have received substantial interest recently. Detailed knowledge of the vehicle aerodynamics is essential to improve fuel efficiency and enhance stability at high-speed cruising. In this study, a numerical simulation has been carried out for three-dimensional turbulent flows around a commercial bus body. Also, the effect of rear-spoiler attached at rear end of bus body was investigated. The Wavier-Stokes equation is solved with SIMPLE method in general curvilinear coordinates system. RNG $k-\varepsilon$ turbulence model with the MARS scheme was used for the evaluating aerodynamic forces, velocity and pressure distribution. The results showed details of the three-dimensional wake flow in the immediate rear of bus body and the effect of rear-spoiler on the wake structure. A maximum of 14% reduction in drag coefficient was achieved for a model with a rear-spoiler.

싸이클론 집진기의 수치해석적 연구 (Numerical Study of Cyclone Dust Collector)

  • 전영남;엄태인
    • 한국대기환경학회지
    • /
    • 제12권1호
    • /
    • pp.43-53
    • /
    • 1996
  • Numerical simulation was performed for the 3-dimensional flow filed of gas and particle phase for cyclone dust collector. FVM(Finite Volume Method) was employed for gas phase. The flow was solved suing the k-.varepsilon. epsilon turbulence model. The particle exit at the bottom of the cone was treated as a solid wall in this model because the gas flow through the effective dust exit is usually insignificant. The major parameters considered in this study was vortex finder diameter, effective dust exit diameterm vortex finder length, inlet type for dimension performance. Particle trajectory calculations were made for three different, particle sizes of 1, 25 and 50 .mu.m. The results obtained from this study give some physical insight of dust particle collection mechanism together with the indication of the collection efficiency. The simulation results were in generally good agreement with empirical knowledge. The application of this kind of computer program looks promising as a potential tool for the design of cyclone and determination of optimum operating condition.

  • PDF

회전 캠 및 고정 실린더식 레이디얼 피스톤 펌프의 송출 유량 특성 (Discharge Flow Characteristics of A Rotating-Cam and Fixed-Cylinder Type Radial Piston Pump)

  • 이일영;최세령
    • 유공압시스템학회논문집
    • /
    • 제8권1호
    • /
    • pp.10-18
    • /
    • 2011
  • In the beginning of this study, pressure in a cylinder and flow rate from a cylinder of a rotating-cam and fixed-cylinder type radial piston pump are investigated through numerical simulations, so that the simulation results might be utilized as basements for examining physical phenomena occurring in the pump assembly. Then, for supplying basic knowledge on pump design, pressure, flow and leakage characteristics of the pump assembly under the variations of major design parameters are investigated through numerical simulations. At the end, key design parameters influencing upon volumetric efficiency of the pump are listed.

A Special Case of Three Machine Flow Shop Scheduling

  • Yang, Jaehwan
    • Industrial Engineering and Management Systems
    • /
    • 제15권1호
    • /
    • pp.32-40
    • /
    • 2016
  • This paper considers a special case of a three machine flow shop scheduling problem in which operation processing time of each job is ordered such that machine 1 has the longest processing time, whereas machine 3, the shortest processing time. The objective of the problem is the minimization of the total completion time. Although the problem is simple, its complexity is yet to be established to our best knowledge. This paper first introduces the problem and presents some optimal properties of the problem. Then, it establishes several special cases in which a polynomial-time optimal solution procedure can be found. In addition, the paper proves that the recognition version of the problem is at least binary NP-complete. The complexity of the problem has been open despite its simple structure and this paper finally establishes its complexity. Finally, a simple and intuitive heuristic is developed and the tight worst case bound on relative error of 6/5 is established.

Dominant components of vibrational energy flow in stiffened panels analysed by the structural intensity technique

  • Cho, Dae-Seung;Choi, Tae-Muk;Kim, Jin-Hyeong;Vladimir, Nikola
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권5호
    • /
    • pp.583-595
    • /
    • 2018
  • Stiffened panels are widely used in naval architecture and ocean engineering, and knowledge about their dynamic behaviour represents important issue in the design procedure. Ordinary vibration analysis consists of natural frequencies and mode shapes determination and can be extended to forced response assessment, while the Structural Intensity (SI) analysis, assessing magnitude and direction of vibrational energy flow provides information on dominant transmission paths and energy distribution including sink positions. In this paper, vibrational energy flow in stiffened panels under harmonic loading is analyzed by the SI technique employing the finite element method. Structural intensity formulation for plate and beam element is outlined, and developed system combining in-house code and general finite element tool is described. As confirmed within numerical examples, the developed tool enables separation of SI components, enabling generation of novel SI patterns and providing deeper insight in the vibrational energy flow in stiffened panels, comparing to existing works.