• Title/Summary/Keyword: Knowledge Evolution

Search Result 268, Processing Time 0.025 seconds

Applying Expert System to Statistical Process Control in Semiconductor Manufacturing (반도체 수율 향상을 위한 통계적 공정 제어에 전문가 시스템의 적용에 관한 연구)

  • 윤건상;최문규;김훈모;조대호;이칠기
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.103-112
    • /
    • 1998
  • The evolution of semiconductor manufacturing technology has accelerated the reduction of device dimensions and the increase of integrated circuit density. In order to improve yield within a short turn around time and maintain it at high level, a system that can rapidly determine problematic processing steps is needed. The statistical process control detects abnormal process variation of key parameters. Expert systems in SPC can serve as a valuable tool to automate the analysis and interpretation of control charts. A set of IF-THEN rules was used to formalize knowledge base of special causes. This research proposes a strategy to apply expert system to SPC in semiconductor manufacturing. In analysis, the expert system accomplishes the instability detection of process parameter, In diagnosis, an engineer is supported by process analyzer program. An example has been used to demonstrate the expert system and the process analyzer.

  • PDF

A Measurement-Based Adaptive Control Mechanism for Pricing in Telecommunication Networks

  • Davoli, Franco;Marchese, Mario;Mongelli, Maurizio
    • Journal of Communications and Networks
    • /
    • v.12 no.3
    • /
    • pp.253-265
    • /
    • 2010
  • The problem of pricing for a telecommunication network is investigated with respect to the users' sensitivity to the pricing structure. A functional optimization problem is formulated, in order to compute price reallocations as functions of data collected in real time during the network evolution. No a-priori knowledge about the users' utility functions and the traffic demands is required, since adaptive reactions to the network conditions are sought in real time. To this aim, a neural approximation technique is studied to exploit an optimal pricing control law, able to counteract traffic changes with a small on-line computational effort. Owing to the generality of the mathematical framework under investigation, our control methodology can be generalized for other decision variables and cost functionals.

Ship information system: overview and research trends

  • Liu, Sheng;Xing, Bowen;Li, Bing;Gu, Mingming
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.670-684
    • /
    • 2014
  • Ship Information Systems (SISs) have been one of the main research focuses in ship design and become a multidisciplinary area. With these growing research trends, it is important to consolidate the latest knowledge and information to keep up with the research needs. In this paper, the SIS and its different forms are introduced and discussed. The beginning of this paper discusses the history and evolution of SIS. The next part of this paper focuses on different fields and research areas such as networking technology, information fusion, information decision, message display, ship control in real-time SISs. A Semi-Physical Simulation Platform (SPSIM) designed for SIS research and its running effect through a new Fuzzy-PID fusion algorithm are introduced in this paper then. A brief literature survey and possible future direction concerning each topic is included.

Improving Performance of Region-Based ACM with Topological Change of Curves (곡선의 위상구조 변경을 이용한 영역 기반 ACM의 성능개선 기법 제안)

  • Hahn, Hee Il
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.1
    • /
    • pp.10-16
    • /
    • 2017
  • This paper proposes efficient schemes for image segmentation using the region-based active contour model. The developed methods can approach the boundaries of the desired objects by evolving the curves through minimization of the Mumford-Shah energy functionals, given arbitrary curves as initial conditions. Topological changes such as splitting or merging of curves should be handled for the methods to work properly without prior knowledge of the number of objects to be segmented. This paper introduces how to change topological structure of the curves and shows experimental results by applying the methods to the images.

Developing efficient transition metal-based water splitting catalyst using rechargeable battery materials (배터리 소재를 이용한 전이금속 화합물 기반 물 분해 촉매 개발)

  • Kim, Hyunah;Kang, Kisuk
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.416-426
    • /
    • 2018
  • Water splitting is regarded as one of the most environmentally benign routes for hydrogen production. Nevertheless, the low energy efficiency to produce the hydrogen has been a critical bottleneck, which is attributable to the multi-electron and multi-step reactions during water splitting reaction. In this respect, the development of efficient, durable, and inexpensive catalysts that can promote the reaction is indispensable. Extensive searching for new catalysts has been carried out for past decades, identifying several promising catalysts. Recently, researchers have found that conventional battery materials; particularly high-voltage intercalation-based cathode materials, could exhibit remarkable performance in catalyzing the water splitting process. One of the unique capabilities in this class of materials is that the valency state of metals and the atomic arrangement of the structure can be easily tailored, based on simple intercalation chemistry. Moreover, taking advantage of the rich prior knowledge on the intercalation compounds can offer the unexplored path to identify new water splitting catalysts.

Update of early phase clinical trials in cancer immunotherapy

  • Lee, Dae Ho
    • BMB Reports
    • /
    • v.54 no.1
    • /
    • pp.70-88
    • /
    • 2021
  • Immunotherapy has revolutionized the landscape of cancer treatment and become a standard pillar of the treatment. The two main drivers, immune checkpoint inhibitors and chimeric antigen receptor T cells, contributed to this unprecedented success. However, despite the striking clinical improvements, most patients still suffer from disease progression because of the evolution of primary or acquired resistance. This mini-review summarizes new treatment options including novel targets and interesting combinational approaches to increase our understanding of the mechanisms of the action of and resistance to immunotherapy, to expand our knowledge of advances in biomarker and therapeutics development, and to help to find the most appropriate option or a way of overcoming the resistance for cancer patients.

Ongoing endeavors to detect mobilization of transposable elements

  • Lee, Yujeong;Ha, Una;Moon, Sungjin
    • BMB Reports
    • /
    • v.55 no.7
    • /
    • pp.305-315
    • /
    • 2022
  • Transposable elements (TEs) are DNA sequences capable of mobilization from one location to another in the genome. Since the discovery of 'Dissociation (Dc) locus' by Barbara McClintock in maize (1), mounting evidence in the era of genomics indicates that a significant fraction of most eukaryotic genomes is composed of TE sequences, involving in various aspects of biological processes such as development, physiology, diseases and evolution. Although technical advances in genomics have discovered numerous functional impacts of TE across species, our understanding of TEs is still ongoing process due to challenges resulted from complexity and abundance of TEs in the genome. In this mini-review, we briefly summarize biology of TEs and their impacts on the host genome, emphasizing importance of understanding TE landscape in the genome. Then, we introduce recent endeavors especially in vivo retrotransposition assays and long read sequencing technology for identifying de novo insertions/TE polymorphism, which will broaden our knowledge of extraordinary relationship between genomic cohabitants and their host.

Optimization of control parameters for speed control of a hydraulic motor using genetic algorithms (유전알리고즘을 이용한 유압모터의 속도제어파라메터 최적화)

  • Hyun, Jang-Hwan;Ahn, Chul-Hyun;Lee, Chung-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.139-145
    • /
    • 1997
  • This study is concerned with the optimizing method of control parameters for a hydraulic speed control system by using genetic algorithms which are general purpose search algorithms based on natural evolution and genetics. It is shown that the genetic altorithms satisfactorily oiptimized control gains of the PI speed control system of an electrohydraulic servomotor and that optimization of control para- meters can be achived without much experience and knowledge for tuning. It is also shown that optimal gains may be determined from fitness distribution curves plotted in given gain spaces.

  • PDF

Evolution of microbiology in the 21st century and the change of oral health care management paradigm (21세기 미생물학의 혁명과 구강위생관리 패러다임의 변화)

  • Kim, Hyesung
    • Journal of Korean Academy of Dental Administration
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Prior to the end of the 20th century, microorganism research was limited to culture and has since been revolutionized by genetic analysis. Microorganisms, including bacteria, can cause disease, but most of them are commensal microorganisms in our bodies. This knowledge changes the pathological approach to infectious diseases and lends to a new perspective on the effects of gut and oral microorganisms on disease and health. The oral cavity, particularly the periodontal pocket, is considered to be a reservoir of microbes that cause disease, and oral microbial control is becoming more important. In this review, I will examine the changes in the microbiological revolution and the meaning of oral healthcare management based on those changes.

Large Language Models: A Guide for Radiologists

  • Sunkyu Kim;Choong-kun Lee;Seung-seob Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.2
    • /
    • pp.126-133
    • /
    • 2024
  • Large language models (LLMs) have revolutionized the global landscape of technology beyond natural language processing. Owing to their extensive pre-training on vast datasets, contemporary LLMs can handle tasks ranging from general functionalities to domain-specific areas, such as radiology, without additional fine-tuning. General-purpose chatbots based on LLMs can optimize the efficiency of radiologists in terms of their professional work and research endeavors. Importantly, these LLMs are on a trajectory of rapid evolution, wherein challenges such as "hallucination," high training cost, and efficiency issues are addressed, along with the inclusion of multimodal inputs. In this review, we aim to offer conceptual knowledge and actionable guidance to radiologists interested in utilizing LLMs through a succinct overview of the topic and a summary of radiology-specific aspects, from the beginning to potential future directions.