• 제목/요약/키워드: Knock control

검색결과 68건 처리시간 0.027초

가솔린 예혼합 압축 착화 엔진의 농후 한계에서 연소와 노킹 특성 (Knocking and Combustion Characteristics at Rich Limit of Gasoline HCCI Engine)

  • 염기태;장진영;배충식
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.9-16
    • /
    • 2006
  • Variable valve timing is one of the attractive ways to control homogeneous charge compression ignition (HCCI) engine. Hot internal residual gas which can be controlled by variable valve timing(VVT) device, makes fuel evaporated easily, and ignition timing advanced. Regular gasoline was used as main fuel and di-methyl ether(DME) was used as ignition promoter in this research. HCCI engine operating range is limited by high combustion peak pressure and engine noise. High combustion pressure can damage the engine during operation. To avoid engine damage, the rich limits have to define using various methods. Peak combustion pressure, rate of cylinder pressure rise was considered to determine rich limit of engine operating range. Knock probability was correlated with the rate of cylinder pressure rise as well as the peak combustion pressure.

2 리터급 터보과급 가솔린 기관에서 내장형 WGV가 기관 성능에 미치는 영향 (The Effect of the Embedded WGV on the Engine Performance for a 2-liter Turbo-charged Gasoline Engine)

  • 장종관
    • 한국자동차공학회논문집
    • /
    • 제24권2호
    • /
    • pp.232-241
    • /
    • 2016
  • The turbocharger, to decrease the harmful exhaust gas(CO, HC and etc.) and $CO_2$ emission as well as the increase of the engine output, would be an useful method for engine downsizing. Therefore the thermal endurance of turbine blade, the lubrication of turbine shaft and the engine knock according to the supercharge of the inlet air, had been studied. And there had been much progress in these research tasks to be achieved a breakthrough. But a study on the built-in WGV of a gasoline engine for a passenger car which may effect on the engine performance, is few. In this paper, the effect of the embedded WGV on the engine performance was performed through the endurance test, which was conducted more than 300 hrs using the 4 stroke, 1998 cc, water-cooled engine. To sum up the major results, there were an abrasion in the area of the WGV head edge and the thermal deformation on the WGV head face, These phenomena led to reducing the boost pressure which caused the reduction in the volumetric efficiency of the engine. It resulted in decreasing the engine power gradually during the life cycle of the embedded WGV.

COMBUSTION STABILITY OF DIESEL-FUELED HCCI

  • Shi, L.;Deng, K.;Cui, Y.
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.395-402
    • /
    • 2007
  • Homogeneous Charge Compression Ignition (HCCI) shows great potential for low $NO_x$ emission but is hampered by the problem of no direct method to control the combustion process. Therefore, HCCI combustion becomes unstable easily, especially at lower and higher engine load. This paper presents a method to achieve diesel-fueled HCCI combustion, which involves directly injecting diesel fuel into the cylinder before the piston arrives at top dead center in the exhaust stroke and adjusting the valve overlap duration to trap more high temperature residual gas in the cylinder. The combustion stability of diesel-fueled HCCI combustion and the effects of engine load, speed, and valve overlap on it are the main points of investigation. The results show that: diesel-fueled HCCI combustion has two-stage heat release rate (low temperature and high temperature heat release) and very low $NO_x$ emission, combustion stability of the HCCI engine is worse at lower load because of misfire and at higher load because of knock, the increase in engine speed aids combustion stability at lower load because the heat loss is reduced, and increasing negative valve overlap can increase in-cylinder temperature which aids combustion stability at lower load but harms it at higher load.

하이브리드용 가솔린엔진의 EGR을 통한 연비향상에 관한 연구 (Study on Fuel Consumption Improvement in SI Engine with EGR for Hybrid Electric Vehicle)

  • 박철웅;최영;김창기
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.128-135
    • /
    • 2008
  • EGR(exhaust gas recirculation) is considered as a most effective method to reduce the NOx emissions. But high EGR tolerance is always pursued not only for its advantages of the pumping loss reduction and fuel economy benefit in Gasoline-Hybrid engine. However, the occurrence of excessive cyclic variation with high EGR normally prevents substantial fuel economy improvements from being achieved in practice. Therefore, the optimum EGR rate should be carefully determined in order to achieve low fuel consumption and low exhaust emission. In this study, 2 liters gasoline engine with E-EGR system was used to investigate the effects of EGR on fuel efficiency, combustion stability, engine performance and exhaust emissions. With optimal EGR rates, the fuel consumption was improved by 4%. This improvement was achieved while a reduction in NOx emissions of 75% was accomplished. Increase of EGR gas temperature causes the charge air temperature to affect the knock phenomenon and moreover, the EGR valve lift changes for the same control signal.

Methyltransferase and demethylase profiling studies during brown adipocyte differentiation

  • Son, Min Jeong;Kim, Won Kon;Oh, Kyoung-Jin;Park, Anna;Lee, Da Som;Han, Baek Soo;Lee, Sang Chul;Bae, Kwang-Hee
    • BMB Reports
    • /
    • 제49권7호
    • /
    • pp.388-393
    • /
    • 2016
  • Although brown adipose tissue is important with regard to energy balance, the molecular mechanism of brown adipocyte differentiation has not been extensively studied. Specifically, regulation factors at the level of protein modification are largely unknown. In this study, we examine the changes in the expression level of enzymes which are involved in protein lysine methylation during brown adipocyte differentiation. Several enzymes, in this case SUV420H2, PRDM9, MLL3 and JHDM1D, were found to be up-regulated. On the other hand, Set7/9 was significantly down-regulated. In the case of SUV420H2, the expression level increased sharply during brown adipocyte differentiation, whereas the expression of SUV420H2 was marginally enhanced during the white adipocyte differentiation. The knock-down of SUV420H2 caused the suppression of brown adipocyte differentiation, as compared to a scrambled control. These results suggest that SUV420H2, a methyltransferase, is involved in brown adipocyte differentiation, and that the methylation of protein lysine is important in brown adipocyte differentiation.

Development and performance analysis of a Miller cycle in a modified using diesel engine

  • Choi, Gyeung-Ho;Poompipatpong, Chedthawut;Koetniyom, Saiprasit;Chung, Yon-Jong;Chang, Yong-Hoon;Han, Sung-Bin
    • 에너지공학
    • /
    • 제17권4호
    • /
    • pp.198-203
    • /
    • 2008
  • The objective of the research was to study the effects of Miller cycle in a modified using diesel engine. The engine was dedicated to natural gas usage by modifying pistons, fuel system and ignition systems. The engine was installed on a dynamometer and attached with various sensors and controllers. Intake valve timing, engine speed, load, injection timing and ignition timing are main parameters. The results of engine performances and emissions are present in form of graphs. Miller Cycle without supercharging can increase brake thermal efficiency and reduce brake specific fuel consumption. The injection timing must be synchronous with valve timing, speed and load to control the performances, emissions and knock margin. Throughout these tested speeds, original camshaft is recommended to obtain high volumetric efficiency. Retard ignition timing can reduce $NO_x$ emissions while maintaining high efficiency.

Ascorbic acid increases demethylation in somatic cell nuclear transfer embryos of the pig (Sus scrofa)

  • Zhao, Minghui;Hur, Tai-Young;No, Jingu;Nam, Yoonseok;Kim, Hyeunkyu;Im, Gi-Sun;Lee, Seunghoon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권7호
    • /
    • pp.944-949
    • /
    • 2017
  • Objective: Investigated the effect and mechanism of ascorbic acid on the development of porcine embryos produced by somatic cell nuclear transfer (SCNT). Methods: Porcine embryos were produced by SCNT and cultured in the presence or absence of ascorbic acid. Ten-eleven translocation 3 (TET3) in oocytes was knocked down by siRNA injection. After ascorbic acid treatment, reprogramming genes were analyzed by realtime reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, relative 5-methylcytosine and 5-hydroxymethylcytosine content in pronucleus were detected by realtime PCR. Results: Ascorbic acid significantly increased the development of porcine embryos produced by SCNT. After SCNT, transcript levels of reprogramming genes, Pou5f1, Sox2, and Klf were significantly increased in blastocysts. Furthermore, ascorbic acid reduced 5-methylcytosine content in pronuclear embryos compared with the control group. Knock down of TET3 in porcine oocytes significantly prevents the demethylation of somatic cell nucleus after SCNT, even if in the presence of ascorbic acid. Conclusion: Ascorbic acid enhanced the development of porcine SCNT embryos via the increased TET3 mediated demethylation of somatic nucleus.

디젤 예혼합 압축착화 엔진에서 배기가스 재순환과 과급의 영향 (Effect of EGR and Supercharging on the Diesel HCCI Combustion)

  • 박세익;국상훈;배충식;김장헌
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.58-64
    • /
    • 2006
  • Homogeneous charge compression ignition(HCCI) combustion is an advanced technique for reducing the hazardous nitrogen oxide(NOx) and particulate matter(PM) in a diesel engine. NOx could be reduced by achieving lean homogeneous mixture resulting in combustion temperature. PM could be also reduced by eliminating fuel-rich zones which exist in conventional diesel combustion. However previous researches have reported that power-output of HCCI engine is limited by the high intensive knock and misfiring. In an attempt to extend the upper load limit for HCCI operation, supercharging in combination with Exhaust Gas Recirculation(EGR) has been applied: supercharging to increase the power density and EGR to control the combustion phase. The test was performed in a single cylinder engine operated at 1200 rpm. Boost pressures of 1.1 and 1.2 bar were applied. High EGR rates up to 45% were supplied. Most of fuel was injected at early timing to make homogeneous mixture. Small amount of fuel injection was followed near TDC to assist ignition. Results showed increasing boost pressure resulted in much higher power-output. Optimal EGR rate influenced by longer ignition delay and charge dilution simultaneously was observed.

Hsp70.1유전자결핍된 마우스에서 허혈 재관류 신장손상에 대한 전처치 운동의 보호효과 (Pre-Exercise Protective Effects Against Renal Ischemic Reperfusion Injury in Hsp 70.1 Knockout Mice)

  • 이진;김원규
    • 생명과학회지
    • /
    • 제20권4호
    • /
    • pp.555-560
    • /
    • 2010
  • 이 연구는 Hsp70.1 유전자가 결핍된 생쥐를 이용하여 운동전처치에 따른 신장허혈재관류손상에서 혈청 크레아틴, 신장에서 CuSOD와 MnSOD의 발현변화를 관찰하는데 그 목적을 두고 있다. 실험동물은 c57/BL6 계 수컷(wild type: WT)과 Hsp70.1 knockout (KO) 생쥐를 정상대조군(n=8), 운동군(n=8), 허혈운동군(n=8) 및 허혈군(n=8)의 4군으로 분류하여 이용하였다. 실험종료 후 마취를 한 후 혈청 creatinine을 분석하기 위해서 신장에서 혈액을 추출하였고, 신장을 적출하여 western blot 으로 eCuSOD와 MnSOD 발현변화를 비교하였다. KO 허혈군에서의 CuSOD, MnSOD는 다른 군에 비해 유의하게 낮게(p<0.001, p<0.05) 발현하였으며, creatinine은 높은(p<0.001)농도로 나타났다. 반면 WT에서는 유의한 변화가 나타나지 않았다. 흥미롭게도 KO허혈운동군에서의 CuSOD, MnSOD는 허혈군보다 뚜렷하게 증가하였으며, creatinine은 허혈군에 비해 현저히 감소(p<0.01)하였다. 이상의 결과를 종합하면 Hsp70은 신장허혈재관류손상에 직접적인 관련이 있음을 추정할 수 있다. 따라서 운동전 처치는 허혈성신장기능저하에 예방할 수 있다고 생각된다.

Suppression of the Epidermal Growth Factor-like Domain 7 and Inhibition of Migration and Epithelial-Mesenchymal Transition in Human Pancreatic Cancer PANC-1 Cells

  • Wang, Yun-Liang;Dong, Feng-Lin;Yang, Jian;Li, Zhi;Zhi, Qiao-Ming;Zhao, Xin;Yang, Yong;Li, De-Chun;Shen, Xiao-Chun;Zhou, Jin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.4065-4069
    • /
    • 2015
  • Background: Epidermal growth factor-like domain multiple 7 (EGFL7), a secreted protein specifically expressed by endothelial cells during embryogenesis, recently was identified as a critical gene in tumor metastasis. Epithelial-mesenchymal transition (EMT) was found to be closely related with tumor progression. Accordingly, it is important to investigate the migration and EMT change after knock-down of EGFL7 gene expression in human pancreatic cancer cells. Materials and Methods: EGFL7 expression was firstly testified in 4 pancreatic cancer cell lines by real-time polymerase chain reaction (Real-time PCR) and western blot, and the highest expression of EGFL7 was found in PANC-1 cell line. Then, PANC-1 cells transfected with small interference RNA (siRNA) of EGFL7 using plasmid vector were named si-PANC-1, while transfected with negative control plasmid vector were called NC-PANC-1. Transwell assay was used to analyze the migration of PANC-1 cells. Real-time PCR and western blotting were used to detect the expression change of EGFL7 gene, EMT markers like E-Cadherin, N-Cadherin, Vimentin, Fibronectin and transcription factors like snail, slug in PANC-1, NCPANC-1, and si-PANC-1 cells, respectively. Results: After successful plasmid transfection, EGFL7 gene were dramatically knock-down by RNA interference in si-PANC-1 group. Meanwhile, migration ability decreased significantly, compared with PANC-1 and NC-PANC-1 group. Meanwhile, the expression of epithelial phenotype marker E-Cadherin increased and that of mesenchymal phenotype markers N-Cadherin, Vimentin, Fibronectin dramatically decreased in si-PANC-1 group, indicating a reversion of EMT. Also, transcription factors snail and slug decreased significantly after RNA interference. Conclusions: Current study suggested that highly-expressed EGFL7 promotes migration of PANC-1 cells and acts through transcription factors snail and slug to induce EMT, and further study is needed to confirm this issue.