• Title/Summary/Keyword: Klystron

Search Result 47, Processing Time 0.035 seconds

Design of High Power RF Amplifier (고출력 고주파 증폭기의 설계)

  • Nam, S.H.;Jeon, M.H.;Kim, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.180-182
    • /
    • 1994
  • In an electron storage ring of Pohang Light Source (PLS), electrons lose their energy in every turn by the synchronous radiation. A high power RF amplifier is employed to compensate the electron energy that is lost by the synchronous radiation. The specification of RF amplifier is an continuous output power of 60 kW at 500.082 MHz operating frequency. The power is supplied to RF cavities in the storage ring tunnel. Total number of amplifier system currently required is three. Tile total number will be increased upto five as the operating condition of storage ring is upgraded. The RF amplifier is mainly consisted of a high voltage DC power supply, an intermediate RF power amplifier (IPA), and a klystron tube. In this article, the design of RF amplifier system and characteristics of the klystron tube will be discussed.

  • PDF

Design of High-Power Pulse Transformer for the 80-MW Klystron Load (80-MW 클라이스트론 부하용 대출력 펄스 트랜스포머의 설계)

  • Jang, S.D.;Chung, S.H.;Oh, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2119-2122
    • /
    • 2000
  • 포항 방사광 가속기의 선형 가속기에서는 80-MW 클라이스트론 부하를 구동하기 위하여 최대 펄스 정격출력 200 MW(400kv 500A, 평탄도 4.4 $\mu s$)인 대출력 펄스 트랜스포머가 요구된다. 펄스 트랜스포머는 펄스 전원공급 장치(Modulator)로부터 대출력 부하(Klystron)로 펄스 에너지를 전달하며 임피던스 정합을 시키는 기능을 한다. 모듈레이터의 고전압 출력 펄스에서 RF 에너지를 발생시키는데 사용되는 유효 출력 에너지는 출력 펄스의 평탄부의 에너지에 해당된다. 그러므로, 펄스 트랜스포머는 빠른 상승시간을 가지는 것이 요구된다. 빠른 상승시간을 얻기 위하여 누설자속, 분포용량이 작게 되도록 설계하여야 한다.

  • PDF

Status and test results of the HPRF system for PEFP 20MeV linear accelerator

  • Seol, K.T.;Kwon, H.J.;Kim, H.S.;Song, Y.G.;Cho, Y.S.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2005.10a
    • /
    • pp.915-916
    • /
    • 2005
  • The high power RF system for the PEFP 20MeV proton accelerator composed of the 3MeV RFQ and the 20MeV DTL has been installed. The klystron for the RFQ was tested up to 600kW and operated routinely to drive the RFQ in a pulse mode operation. The klystron for the DTL which consists of 4 tanks was tested up to 800kW in pulse mode operation. The pulse width and repetition rate was 50${\mu}s$ and 1Hz respectively. The high power RF system has been operated to drive each accelerating structure and will be used to accelerate 20MeV proton beam.

  • PDF

Experimental Study on Dynamic Characteristics of an Impinging Jet Injector (충돌형 분사기의 동특성 실험연구)

  • Kim, Jiwook;Chung, Yunjae;Lee, Ingyu;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.86-94
    • /
    • 2013
  • Research on dynamic characteristics of injectors gives us insight for preventing combustion instability in a rocket engine. While lots of studies have been done about swirl injectors' dynamic characteristics, little is known about impinging jet injectors' dynamic characteristics. For this reason, this study was aimed to reveal the dynamic characteristics of an impinging jet injector based on experiment using a hydraulic mechanical pulsator. Gain, which is the relationship between input pressure and output value(pressure or velocity) was analyzed with the frequency and manifold pressure change. Pulsating frequency was chosen in the low range: 5, 10, 15 Hz. As a background work, Methods to determine the jet velocity were discussed. Klystron effect was also considered as a factor of this experiment.

Design of High Average Power Pulse Transformer for 30-MW Klystron of L-Band Linac Application (산업용 선형가속기 시스템 적용을 위한 30-MW 클라이스트론용 고 평균전력 펄스 트랜스포머의 설계)

  • Jang, S.D.;Son, Y.G.;Gwon, S.J.;Oh, J.S.;Bae, Y.S.;Lee, H.G.;Moon, S.I.;Kim, S.H.;Cho, M.H.;NamKung, W.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1550-1551
    • /
    • 2006
  • An L-band linear accelerator system for e-beam sterilization is under design for bio-technology application. The klystron-modulator system as RF microwave source has an important role as major components to offer the system reliability for long time steady state operation. A PFN line type pulse generator with a peak power of 71.5-MW, $7{\mu}s$, 285 pps is required to drive a high-power klystron. The high power pulse transformer has a function of transferring pulse energy from a pulsed power source to a high power load. The pulse transformer producing a pulse with a peak voltage of 275 kV is required to produce 30-MW peak and 60 kW average RF output power at the frequency of 1.3-GHz. We have designed the high power pulse transformer with 1:13 step-up ratio. The peak and average power capability is 71.5-MW (275 kV, 260 A at load side with $7{\mu}s$ pulse width) and 130 kW, respectively. In this paper, we present a system overview and initial design results of the high power pulse transformer.

  • PDF

Parameter Evaluation of High-Power Pulse Transformer for L-Band 30-MW Klystron (L-band 30-MW 클라이스트론용 고출력 펄스트랜스포머의 파라미터 평가)

  • Jang, S.D.;Son, Y.G.;Kwon, S.J.;Oh, J.S.;Kim, S.H.;Yang, H.R.;Moon, S.I.;Kwon, B.H.;Cho, M.H.;NamKung, W.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1079-1081
    • /
    • 2007
  • An L-band Linear Accelerator System for E-beam sterilization is under construction for bio-technology application. The klystron-modulator system as an RF microwave source has an important role as major components to offer the system reliability for long time steady-state operations. A PFN line type pulse generator with a peak power of 71.5-MW, $7\;{\mu}s$, 285 pps is required to drive a high-power klystron. The high power pulse transformer has a function of transferring pulse energy from a pulsed power source to a high power load. The pulse transformer producing a pulse with a peak voltage of 275 kV is required to produce 30-MW peak and 60 kW average RF output power at the frequency of 1.3-GHz. We have designed the high power pulse transformer with 1:13 step-up ratio. The peak and average power capability is 71.5-MW (275 kV, 260 A at load side with $7\;{\mu}s$ pulse width) and 130 kW, respectively. In this paper, we present measurements and its analysis on the design parameters, and an initial test result as well as a design concept on the high-power pulse transformer.

  • PDF

KLYSTRON-MODULATOR SYSTEM PERFORMANCES FOR PLS 2-GeV LINAC (포항 20억 전자볼트 선형가속기 클라이스트론-모듈레이터 시스템의 성능)

  • Park, S.W.;Park, S.S.;Lee, K.T.;Oh, J.S.;Cho, M.H.;NamKung, W.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1365-1367
    • /
    • 1995
  • The PLS 2-GeV linac employs 11 units of high-power pulsed klystrons(80MW) as the main RF sources. The matching modulators of 200 MW(400kV, 500 A) can provide a flat-top pulse width of 4.4 ${\mu}s$ with a maximum pulse repetition rate of 120 Hz at the full power level. For a good stability of electron beams, the pulse-to-pulse flat-top voltage variation of a modulator requires less than 0.5%. In order to achieve this goal, we stabilized high voltage charging power supplies within 1% by a phase controlled SCR voltage regulator. In addition, we employed ac/dc feedback together with a resistive De-Q'ing system to achieve far less than 0.5% variation of the PFN charging voltage. This paper presents the main feature of the klystron-modulator system and the characteristics of the pulsed high-power RF system performance during the beam injection operation for the Pohang Light Source commissioning.

  • PDF

Design and Test Results of High-Power Pulse Generator System for Industrial Accelerator Application (산업용 가속기용 고출력 펄스시스템의 설계와 시험)

  • Jang, S.D.;Kim, S.H.;Yang, H.Y.;Cho, M.H.;Ko, I.S.;NamKung, W.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1370_1372
    • /
    • 2009
  • A conventional linear accelerator system requires a flat-topped pulse with less than $\pm$ 0.5% ripple to meet the beam energy spread requirements and to improve pulse efficiency of RF systems. A a line-type pulsed modulator is widely used in pulsed power circuits for applications such as accelerators, radar, medical radiation, or ionization systems. The high-voltage pulse generator system with an output voltage of 284 kV, a pulse width of $10{\mu}s$, and a rise time of $0.84{\mu}s$ has been designed and fabricated to drive a klystron which has 30-MW peak and 60-kW average RF output power. The high-voltage test was performed using the klystron load. This thesis describes the design and test results of high-power pulse generator system for industrial accelerator application. The experimental results were analyzed and compared with the design.

  • PDF