• Title/Summary/Keyword: Klebsiella pneumoniae ATCC 13883

Search Result 3, Processing Time 0.017 seconds

Inhibition of Klebsiella pneumoniae ATCC 13883 Cells by Hexane Extract of Halimeda discoidea (Decaisne) and the Identification of Its Potential Bioactive Compounds

  • Supardy, Nor Afifah;Ibrahim, Darah;Sulaiman, Shaida Fariza;Zakaria, Nurul Aili
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.872-881
    • /
    • 2012
  • The inhibitory effect of the Klebsiella pneumoniae ATCC 13883 strain caused by the hexane extract of Halimeda discoidea (Nor Afifah et al., 2010) was further evaluated by means of the microscopy view and its growth curves. The morphological changes of the K. pneumoniae ATCC 13883 cells were observed under the scanning electron microscope (SEM) and transmission electron microscope (TEM) after they were treated at minimum inhibitory concentration (MIC; 0.50 mg/ml) (Nor Afifah et al., 2010) for 12, 24, and 36 h. The results showed the severity of the morphological deteriorations experienced by the treated cells. The killing curve assay was performed for 48 h at three different extract concentrations (1/2 MIC, MIC, and 2 MIC). An increase in the extract concentration of up to 2 MIC value did significantly reduce the number of cells by approximately 1.9 $log_{10}$, as compared with the control. Identification of the potential compounds of the extract responsible for the antibacterial activity was carried out through the gas chromatography-mass spectrum (GC-MS) analysis of the active subfraction, and the compound E-15-heptadecenal was identified and suggested as the most potential antibacterial compound of this extract. The subsequent cellular degenerations showed by the data might well explain the inhibitory mechanisms of the suggested antibacterial compound. All of these inhibitory effects have further proven the presence of an antibacterial compound within H. discoidea that can inhibit the growth of K. pneumoniae ATCC 13883.

Antimicrobial Activities of Corn Silk Extract of Klebsiella pneumoniae (옥수수수염 추출액의 Klebsiella pneumoniae에 대한 항균활성)

  • Kang, Hyun-Kyung;Bae, Il Kwon
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1399-1407
    • /
    • 2015
  • Klebsiella pneumoniae is found in the normal flora of the skin, mouth, respiratory tract, urinary tract, and intestines in human. However, the stain is opportunistic pathogen, which is the causative agent of community acquired pneumonia. Corn silk has been known to be effective for antimicrobial activity against pathogenic bacteria, including K. pneumoniae, Staphylococcus aureus, Bacillus subtilis, Shigella spp., Salmonella spp., Escherichia coli, Pseudomonas aeruginosa, et al. In this study we focused on the antimicrobial properties of con silk water extract of K. penumoniae. K. pneumoniae isolates K. pneumoniae ATCC 13883 and broad-spectrum β-lactamase (BSBL), exteded-spectrum β-lactamase (ESBL), carbapenemase-producers. Antimicrobial susceptibilities were determined by the disk diffusion method. Searches for bla genes were performed by PCR amplication and direct sequencing. MacConkey agar plate medium was prepared using the corn silk extracts (50% or 100%) instead of distilled water for antimicrobial activity test. The microbial growth inhibitory potential of K. pneumoniae was determined by using the MacConkey agar plate spreading method, and the plate was incubated 18 hr at 37℃. Genes encoding β-lactamases including SHV-1 (n=8), SHV-2a (n=8), SHV-5 (n=2), SHV-11 (n=2), SHV-12 (n=18), TEM-1 (n=10), CTX-M-3 (n=2), CTX-M-14 (n=2), CTX-M-15 (n=1), GES-5 (n=5), KPC-2 (n=6), KPC-3 (n=4), and NDM-1 (n=2) were detected. The corn silk extract showed significantly antimicrobial activity against K. pneumoniae ATCC 13883, but BSBLs, ESBLs, and carbapenemase producers were not. Therefore, corn silk extract is thought to be able to assist in the prevention and rapid recovery of infectious disease caused by K. pneumoniae.

Application of the Extract of Zanthoxylum piperitum DC to Manufacturing Eco-friendly Nosocomial Infection Control Protective Materials (초피의 항균 활성을 이용한 원내 감염 제어 친환경 방호 소재 개발)

  • Shin Young Park;Ki Yun Kim;Do Youn Jun;Sung Chul Kim;Hyo-Il Jung;Young Ho Kim
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.820-827
    • /
    • 2023
  • Since COVID-19 began at the end of 2019, the wearing time of protective clothing used to prevent pathogenic bacteria and virus infection has increased, and the development of safe protective materials that are human-friendly and have antibacterial and antiviral functions has been required. In this study, we investigated the possibility of developing natural antibacterial protection materials using ethanol extract of the medicinal plant Zanthoxylum Piperitum DC. The antibacterial activity assay of the 80% ethanol extract of Z. piperitum DC leaves against various nosocomial infectious bacteria, using the disk diffusion method, showed that Staphylococcus aureus ATCC 25923, Klebsiella pneumoniae ATCC 13883, Salmonella typhimurium, and Aeromonas hydrophila are sensitive to the inhibitory action of the extract. The IC50 values of the ethanol extract against S. aureus, K. pneumoniae, P. vulgaris and A. hydrophila were about 0.59 mg/ml, 0.50 mg/ml, 1.06 mg/ml, and 0.06 mg/ml, respectively. To determine whether the ethanol extract of Z. piperitum DC leaves can be applied to the development of antibacterial protective fabric, the ethanol extract was tested using a protective fabric from the KM Health Care Corp. using the JIS L1902-Absorption method. As a result, the bacteriostatic and bactericidal activity values of S. aureus ATCC 25923 and K. pneumoniae ATCC 13883 appeared to be more than 2.0 when treated with the ethanol extract at a concentration of 1% (w/v). Together, these results suggest that Z. piperitum DC leaves can be applied to develop natural antibacterial functional protective fabrics.