• 제목/요약/키워드: Kinetic mechanism

검색결과 719건 처리시간 0.026초

Nucleophilic Substitution Reactions of 2-Chloro-2-Propen-1-yl Arenesulfonates with Anilines and N,N-Dimethylanilines in Acetonitrile

  • 오혁근;정은미;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권12호
    • /
    • pp.1334-1336
    • /
    • 1998
  • Kinetic studies are carried out on the reactions of 2-chloro-2-propen-1-yl arenesulfonates with anilines and N,N-dimethylanilines in acetonitrilile at 45.0 ℃. The 2-chloro substituent is found to deactive the allyl moiety with considerable decrease in the rates. The sign and magnitude of the cross-interaction constant (ρxz 0.3) and the inverse secondary kinetic isotope effect (kH/kD 0.92) support an SN2 mechanism with a relatively tight transition state. The possibility of an SN2' mechanism can be safely precluded based on the ρxz values observed.

Kinetics and Mechanism of the Reactions of S-Phenyl Dithiobenzoates with Benzylamines in Acetonitrile

  • 오혁근;신철호;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권7호
    • /
    • pp.657-661
    • /
    • 1995
  • Kinetic studies are carried out on the reaction of S-phenyl dithiobenzoates with benzylamines in acetonitrile at 30.0 ℃. Small magnitude of ρX (βX) as well as ρZ (βZ) obtained suggests rate-limiting nucleophilic attack of the thiocarbonyl carbon. This is supported by the unusually small magnitude of ρXY and ρYZ, albeit their signs do not agree with those expected. Moreover, the inverse secondary kinetic isotope effects (kH/kD<1.0) involving deuterated benzylamine nucleophiles are also in line with the proposed mechanism.

진공상온분사(VKS) 공정에서의 비행입자 가속 기구 및 속도제어를 위한 가스 유량 효과에 관한 연구 (Research on Acceleration Mechanism of Inflight Particle and Gas Flow Effect for the Velocity Control in Vacuum Kinetic Spray Process)

  • 박형권;권주혁;이일주;이창희
    • 한국재료학회지
    • /
    • 제24권2호
    • /
    • pp.98-104
    • /
    • 2014
  • Vacuum kinetic spray(VKS) is a relatively advanced process for fabricating thin/thick and dense ceramic coatings via submicron-sized particle impact at room temperature. However, unfortunately, the particle velocity, which is an important value for investigating the deposition mechanism, has not been clarified yet. Thus, in this research, VKS average particle velocities were derived by numerical analysis method(CFD: computational fluid dynamics) connected with an experimental approach(SCM: slit cell method). When the process gas or powder particles are accelerated by a compressive force generated by gas pressure in kinetic spraying, a tensile force generated by the vacuum in the VKS system accelerates the process gas. As a result, the gas is able to reach supersonic speed even though only 0.6MPa gas pressure is used in VKS. In addition, small size powders can be accelerated up to supersonic velocity by means of the drag-force of the low pressure process gas flow. Furthermore, in this process, the increase of gas flow makes the drag-force stronger and gas distribution more homogenized in the pipe, by which the total particle average velocity becomes higher and the difference between max. and min. particle velocity decreases. Consequently, the control of particle size and gas flow rate are important factors in making the velocity of particles high enough for successful deposition in the VKS system.

Kinetics and Mechanism of the Aminolysis of O-Methyl S-Aryl Thiocarbonates in Acetonitrile

  • Oh, Hyuck-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1539-1542
    • /
    • 2011
  • The aminolysis of O-methyl S-aryl thiocarbonates with benzylamines are studied in acetonitrile at -45.0$^{\circ}C$. The ${\beta}_X$(${\beta}_{nuc}$) values are in the range 0.62-0.80 with a negative cross-interaction constant, ${\rho}_{XZ}$ = -0.42, which are interpreted to indicate a concerted mechanism. The kinetic isotope effects involving deuterated benzylamine nucleophiles ($XC_6H_4CH_2ND_2$) are large, $k_H/k_D$ = 1.29-1.75, suggesting that the N-H(D) bond is partially broken in the transition state by forming a hydrogen-bonded four-center cyclic structure. The concerted mechanism is enforced by the strong push provided by the MeO group which enhances the nucleofugalities of both benzylamine and arenethiolate from the putative zwitterionic tetrahedral intermediate.

고속 직분식 디젤 엔진에서의 점화지연시기 예측 (Prediction of Ignition Delay for HSDI Diesel Engine)

  • 임재만;김용래;온형석;민경덕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1704-1709
    • /
    • 2004
  • New reduced chemical kinetic mechanism for prediction of autoignition process of HSDI diesel engine was investigated. For precise prediction of the ignition characteristics of diesel fuel, mechanism coefficients were fitted by the experimental results of ignition delay of diesel spray in a constant volume vessel. Ignition delay of diesel engine on various operation condition was calculated based on the new reduced chemical mechanism. The calculation results agreed well with experimental data.

  • PDF

Numerical Simulations of the Pyrolysis of 1, 2 Dichloroethane

  • Lee, Ki-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.102-108
    • /
    • 2002
  • Numerical simulations of 1, 2 dichloroethane(EDC) pyrolyisis are conducted to understand the process in the production of the vinyl chloride monomer (VCM) and by-products. A chemical kinetic mechanism Is developed, with the adopted scheme involving 44 gas-phase species and 260 elementary forward and backward reactions. Detailed sensitivity analyses and the rates of production analysis are performed on each of the reactions and the various species, respectively. The concentrations of EDC, VCM, and HCI predicted by this mechanism are in good agreement with those deduced from experiments of commercial and laboratory scale. The mechanism is found to accurately predict the EDC yield an(1 the production of by-products by varying the ranges of pyrolysis temperature, residence time, and pressure which impact on the pyrolysis of 1, 2 dichloroethane. The influence of reactions related to H atom on the relative sensitivity of EDC becomes important as the residence time increases. The pyrolysis of EDC mainly occurs through C$_2$H$_4$Cl$_2$+Cl=CH$_2$CICHI+HCI.

Kinetics and Mechanism of the Aminolysis of Aryl N-Benzyl Thiocarbamates in Acetonitrile

  • Oh, Hyuck-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권1호
    • /
    • pp.137-140
    • /
    • 2011
  • The aminolysis reactions of phenyl N-benzyl thiocarbamate with benzylamines in acetonitrile at $50.0^{\circ}C$ are investigated. The reactions are first order in both the amine and the substrate. Under amine excess, pseudo-first coefficient ($k_{obs}$) are obtained, plot of $k_{obs}$ vs free amine concentration are linear. The signs of ${\rho}_{XZ}$ (< 0) are consistent with concerted mechanism. Moreover, the variations of $\rho_X$ and $\rho_Z$ with respect to the sustituent in the substrate and large ${\rho}_{XZ}$ value indicate that the reactions proceed concerted mechanism. The normal kinetic isotope effects ($k_H/k_D$ = 1.3 ~ 1.5) involving deuterated benzylamine nucleophiles suggest a hydrogen-bonded, four-centered-type transition state. The activation parameters, ${\Delta}H^\ddagger$ and ${\Delta}S^\ddagger$, are consistent with this transition state structure.

산화억제제를 첨가한 탄소/탄소 복합재료의 물성에 관한 연구 : 8. TEOS를 함유한 복합재료의 열분해 메카니즘 및 열안정성 연구 (Influence of Oxidation Inhibitor on Carbon-Carbon Composites : 8. Studies on Thermal Decomposition Mechanism and Thermal Stability of Composites Impregnated with TEOS)

  • 박수진;서민강;이재락
    • 폴리머
    • /
    • 제25권6호
    • /
    • pp.866-875
    • /
    • 2001
  • 본 연구에서는 고온 산화분위기 하에서 탄소/탄소 복합재료의 열적 향상을 위해 사용된 tetraethylorthosilicate(TEOS)의 첨가량에 따른 복합재료의 kinetic parameter에 기초한 열분해 메카니즘 및 열안정성을 열중량분석기(TGA)를 사용하여 고찰하였다 TEOS를 함유한 탄소/탄소 복합재료의 kinetic parameter, 즉 열분해 활성화 에너지 ($E_d$), 반응차수(n), 지수앞 인자 (A)는 각각 136 kJ/mol, 0차, 및 2.3$\times$$10^9s^{-1}$을 나타내었으며, 특히 IPDT 및 $E_d$로부터 살펴본 복합재료의 열안정성은 탄소/탄소 복합재료에 TEOS가 첨가되면 크게 향상되었는데, 이는 산소에 대한 산화방지막, 즉 $SiO_2$의 형성으로 인한 복합재료 표면에서의 카본 활성종에 산소의 침투를 방해하여 TEOS를 함유한 복합재료가 이를 함유하지 않은 것에 비하여 표면 산화 속도가 감소되어 열안정성이 증가하였다고 사료된다.

  • PDF

Kinetics and Mechanism of Anilinolysis of Phenyl N-Phenyl Phosphoramidochloridate in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3274-3278
    • /
    • 2012
  • The kinetic studies on the reactions of phenyl N-phenyl phosphoramidochloridate (8) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) have been carried out in acetonitrile at $60.0^{\circ}C$. The obtained deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) are huge secondary inverse ($k_H/k_D$ = 0.52-0.69). A concerted mechanism is proposed with a backside attack transition state (TS) on the basis of the secondary inverse DKIEs and the variation trends of the $k_H/k_D$ values with X. The degree of bond formation in the TS is really extensive taking into account the very small values of the DKIEs. The steric effects of the two ligands on the rates are extensively discussed for the aminolyses of the chlorophosphate-type substrates on the basis of the Taft equation.

Transition Mechanism from Brittle Fracture to Ductile Shear when Machining Brittle Materials with an Abrasive Waterjet

  • Huang, Chuanzhen;Zhu, Hongtao;Lu, Xinyu;Li, Quanlai;Che, Cuilian
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권2호
    • /
    • pp.11-17
    • /
    • 2008
  • Critical erosion kinetic energy models for radial/median cracks and lateral cracks in a workpiece are established in this study. We used experimental results to demonstrate that the fracture erosion resistance and erosion machining number could be used to evaluate the brittle fracture resistance and machinability of a workpiece. Erosion kinetic energy models were developed to predict brittle fracture and ductile shear, and a critical erosion kinetic energy model was developed to predict the transition from brittle fracture to ductile shear. These models were verified experimentally.