DOI QR코드

DOI QR Code

Kinetics and Mechanism of the Aminolysis of Aryl N-Benzyl Thiocarbamates in Acetonitrile

  • Oh, Hyuck-Keun (Department of Chemistry, Research Institute of Physics and Chemistry, Chonbuk National University)
  • Received : 2010.10.18
  • Accepted : 2010.11.02
  • Published : 2011.01.20

Abstract

The aminolysis reactions of phenyl N-benzyl thiocarbamate with benzylamines in acetonitrile at $50.0^{\circ}C$ are investigated. The reactions are first order in both the amine and the substrate. Under amine excess, pseudo-first coefficient ($k_{obs}$) are obtained, plot of $k_{obs}$ vs free amine concentration are linear. The signs of ${\rho}_{XZ}$ (< 0) are consistent with concerted mechanism. Moreover, the variations of $\rho_X$ and $\rho_Z$ with respect to the sustituent in the substrate and large ${\rho}_{XZ}$ value indicate that the reactions proceed concerted mechanism. The normal kinetic isotope effects ($k_H/k_D$ = 1.3 ~ 1.5) involving deuterated benzylamine nucleophiles suggest a hydrogen-bonded, four-centered-type transition state. The activation parameters, ${\Delta}H^\ddagger$ and ${\Delta}S^\ddagger$, are consistent with this transition state structure.

Keywords

References

  1. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963. https://doi.org/10.1021/ja00463a032
  2. Castro, E. A.; Gil, F. J. J. Am. Chem. Soc. 1977, 99, 7611. https://doi.org/10.1021/ja00465a032
  3. Castro, E. A.; Aliaga, M.; Campodonico, P. J.; Santos, J. G. J. Org. Chem. 2002, 67, 8911. https://doi.org/10.1021/jo026390k
  4. Castro, E. A.; Andajar, M.; Taro, A.; Santos, J. G. J. Org. Chem. 2003, 68, 3608, 5930.
  5. Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 2001, 66, 6000. https://doi.org/10.1021/jo0100695
  6. Bond, P. M.; Moodie, R. B. J. Chem. Soc. Perkin Trans. 2 1976, 679.
  7. Shawali, A. S.; Harhash, A.; Sidky, M. M.; Hassanen, H. M.; Elkaabi, S. S. J. Org. Chem. 1986, 51, 3498. https://doi.org/10.1021/jo00368a020
  8. Satterthwait, A. C.; Jencks, W. P. J. Am. Chem. Soc. 1974, 96, 7018. https://doi.org/10.1021/ja00829a034
  9. Oh, H. K.; Shin, C. H.; Lee, I. Bull. Korean Chem. Soc. 1995, 16, 657.
  10. Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org. Chem. 1997, 62, 5780. https://doi.org/10.1021/jo970413r
  11. Um, I-H.; Kwon, H-J.; Kwon, D-S.; Park, J-Y. J. Chem. Res. 1995, 1801.
  12. Um, I-H.; Choi, K-E.; Kwon, D-S. Bull. Korean Chem. Soc. 1990, 11, 362.
  13. Castro, E. A.; Ureta, C. J. Chem. Soc. Perkin Trans 2 1991, 63.
  14. Castro, E. A.; Areneda, C. A. Santos, J. G. J. Org. Chem. 1997, 62, 126. https://doi.org/10.1021/jo961275t
  15. Castro, E. A.; Ureta, C. J. Org. Chem. 1990, 55, 1676. https://doi.org/10.1021/jo00292a051
  16. Castro, E. A.; Ureta, C. J. Org. Chem. 1989, 54, 1253.
  17. Castro, E. A.; Santos, C. L. J. Org. Chem. 1985, 50, 3595. https://doi.org/10.1021/jo00219a029
  18. Shawali, A. S.; Harhash, A.; Hassanee, H. M.; Alkaaabi, S. S. J. Org. Chem. 1986, 51, 3498. https://doi.org/10.1021/jo00368a020
  19. Lee, I. Chem. Soc. Rev. 1990, 19, 317. https://doi.org/10.1039/cs9901900317
  20. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
  21. Lee, I.; Sung, D. D. Curr. Org. Chem. 2004, 8, 557. https://doi.org/10.2174/1385272043370753
  22. Koh, H. J.; Kim, O. K.; Lee, H. W.; Lee, I. J. Phys. Org. Chem. 1997, 10, 725. https://doi.org/10.1002/(SICI)1099-1395(199710)10:10<725::AID-POC943>3.0.CO;2-X
  23. Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4, 45. https://doi.org/10.1002/9780470171837.ch2
  24. Lee, I.; Kim, C. K.; Han, I. S.; Lee, H. W.; Kim, W. K.; Kim, Y. B. J. Phys. Chem. B 1999, 103, 7302. https://doi.org/10.1021/jp991115w
  25. Spillane, W. J.; Hogan, G.; McGroth, P.; King, J.; Brack, C. J. Chem. Soc. Perkin trans. 2 1996, 2099.
  26. Oh, H. K.; Park, J. E,; Sung, D. D.; Lee, I. J. Org. Chem. 2004, 69, 9285. https://doi.org/10.1021/jo0484676
  27. Oh, H. K.; Park, J. E,; Sung, D. D.; Lee, I. J. Org. Chem. 2004, 69, 3150. https://doi.org/10.1021/jo049845+
  28. Koh, H. J.; Lee, J-W.; Lee, H. W.; Lee, I. Can, J. Chem. 1998, 76, 710. https://doi.org/10.1139/cjc-76-6-710
  29. Oh, H. K.; Lee, Y. H.; Lee, I. Int. J. Chem. Kinet. 2000, 32, 131. https://doi.org/10.1002/(SICI)1097-4601(2000)32:3<131::AID-KIN2>3.0.CO;2-C
  30. Castro, E. A.; Munoz, P.; Santos, J. G. J. Org. Chem. 1999, 64, 8298. https://doi.org/10.1021/jo991036g
  31. Lee, K. S.; Adhikary, K. K.; Lee, H. W; Lee, B. S.; Lee, I. Org. Biomol. Chem. 2003, 1, 1989. https://doi.org/10.1039/b300477e
  32. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963. https://doi.org/10.1021/ja00463a032
  33. Castro, E. A.; Angel, M,; Arellano, D.; Santos, J. G. J. Org. Chem. 2001, 66, 6571. https://doi.org/10.1021/jo0101252
  34. Castro, E. A.; Leandro, L.; Millan, P.; Santos, J. G. J. Org. Chem. 1999, 64, 1953. https://doi.org/10.1021/jo982063u
  35. Stefanidas, D.; Cho, S.; Dhe-Paganon, S.; Jencks, W. P. J. Am. Chem. Soc. 1993, 115, 1650. https://doi.org/10.1021/ja00058a006
  36. Fersht, A. R.; Jencks, W. P. J. Am. Chem. Soc. 1970, 92, 6963.
  37. Ba-Saif, S.; Luthra, A. K.; Williams, A. J. Am. Chem. Soc. 1989, 111, 2647. https://doi.org/10.1021/ja00189a045
  38. Colthurst, M. J.; Nanni, M.; Williams, A. J. Chem. Soc. Perkin Trans. 2 1996, 2285.
  39. Pross, A. Adv. Phys. Org. Chem. 1997, 14, 69.
  40. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529. https://doi.org/10.1135/cccc19991529
  41. Stefanidas, D.; Cho, S.; Dhe-Paganon, S.; Jencks, W. P. J. Am. Chem. Soc. 1993, 115, 1650. https://doi.org/10.1021/ja00058a006
  42. Guggenheim, E. A. Philos, Mag. 1926, 2, 538. https://doi.org/10.1080/14786442608564083
  43. Oh, H. K.; Hong, S. K. Bull. Korean Chem. Soc. 2009, 30, 2453. https://doi.org/10.5012/bkcs.2009.30.10.2453
  44. Jeong, K. S.; Oh, H. K. Bull. Korean Chem. Soc. 2008, 29, 1621. https://doi.org/10.5012/bkcs.2008.29.8.1621
  45. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165. https://doi.org/10.1021/cr00002a004
  46. Bukingham, J. Dictionary of Organic Chemistry, 5th Ed.; Chapman and Hall: New York, 1982.
  47. Streitwiser, A.; Heathcock, C. H. Introduction to Organic Chemistry, 3rd Ed.; Macmillan Publishing Co.: New York, 1989; p 693.
  48. Wiberg, K. B. Physical Organic Chemistry; Wiley: New York, 1964, p 378.

Cited by

  1. Kinetics and Mechanism of the Benzylaminolysis of O,O-Diphenyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1625
  2. Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate in Acetonitrile vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1547
  3. Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate: Effect of Nonleaving Group on Reactivity and Reaction Mechanism vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1551
  4. Aminolysis of Benzyl 2-Pyridyl Thionocarbonate and t-Butyl 2-Pyridyl Thionocarbonate: Effects of Nonleaving Groups on Reactivity and Reaction Mechanism vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1115
  5. A Kinetic Study on Ethylaminolysis of Phenyl Y-Substituted-Phenyl Carbonates: Effect of Leaving-Group Substituents on Reactivity and Reaction Mechanism vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1722
  6. -Carbothiophenyl Group Chemistry in Peptide Synthesis and Bioconjugation vol.25, pp.4, 2014, https://doi.org/10.1021/bc500052r
  7. Nucleophilic Substitution Reactions of 2,4-Dinitrophenyl X-Substituted-Benzenesulfonates and Y-Substituted-Phenyl 4-Nitrobenzenesulfonates with Azide Ion: Regioselectivity and Reaction Mechanism vol.36, pp.5, 2015, https://doi.org/10.1002/bkcs.10259
  8. -3,4-Dinitrophenyl Thionobenzoate: Effect of Amine Nature on Reactivity and Reaction Mechanism vol.36, pp.6, 2015, https://doi.org/10.1002/bkcs.10293
  9. -4-Pyridyl Thionobenzoate in Acetonitrile: Factors Influencing Reactivity and Reaction Mechanism vol.37, pp.10, 2016, https://doi.org/10.1002/bkcs.10906
  10. -2-Pyridyl Thionobenzoate in Acetonitrile: Effect of Changing Electrophilic Center from CO to CS on Reactivity and Reaction Mechanism vol.37, pp.9, 2016, https://doi.org/10.1002/bkcs.10875
  11. -Y-substituted-Phenyl Thionocarbonates: Effects of Changing Nonleaving Group from Thionobenzoyl to Phenyloxythionocarbonyl on Reactivity and Transition-State Structure vol.38, pp.9, 2017, https://doi.org/10.1002/bkcs.11227
  12. Kinetics and Reaction Mechanism for Aminolysis of Benzyl 4-Pyridyl Carbonate in H2O: Effect of Modification of Nucleofuge from 2-Pyridyloxide to 4-Pyridyloxide on Reactivity and Reaction Me vol.33, pp.7, 2011, https://doi.org/10.5012/bkcs.2012.33.7.2269
  13. Aminolysis of Benzyl 4-Pyridyl Carbonate in Acetonitrile: Effect of Modification of Leaving Group from 2-Pyridyloxide to 4-Pyridyloxide on Reactivity and Reaction Mechanism vol.33, pp.8, 2011, https://doi.org/10.5012/bkcs.2012.33.8.2719