• 제목/요약/키워드: Kinetic isotope effect

검색결과 90건 처리시간 0.019초

Stoichiometric Solvation Effects. Solvolysis of Methanesulfonyl Chloride

  • 구인선;양기열;안선경;이종광;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권10호
    • /
    • pp.955-956
    • /
    • 2000
  • Solvolyses of methanesulfonyl chloride in water, $D^2O$, $CH^3OD$, and in aqueous binary mixtures of acetone, eth-anol and methanol are investigated at 25, 35 and $45^{\circ}C.$ The Grunwald-Winstein plot of first-order rate con-stants for the solvolytic react ion of methanesulfonyl chloride with YCl (based on 2-adamantyl chloride) shows marked dispersions into three separate lines for three aqueous mixtures with a small m value (m < 0.30), and shows a rate maximum for aqueous alcoholic solvents. Stoichiometric third-order rate constants, kww and kaa were calculated from the observed first-order rate constants and (kaw + kwa) was calculated from the kww and kaa values. The kinetic solvent isotope effects determined in water and methanol are consistent with the proposed mechanism of the general base catalyzed and/or SAN/SN2 reaction mechanism for methanesulfonyl chloride solvolyses based on mass law and stoichiometric solvation effect studies.

Stoichiometric Solvation Effects. Part 4. Product-Rat Correlations for Solvolyses of p-Methoxyphenyl Chloroformate in Alcohol-Water Mixtures

  • 구인선;양기열;구자찰;박종근;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권9호
    • /
    • pp.1017-1021
    • /
    • 1997
  • Solvolyses of p-methoxyphenyl chloroformate in water, D2O, CH3OD, 50% D2O-CH3OD, and in aqueous binary mixtures of acetone, ethanol and methanol are investigated at 25.0 ℃. Product selectivities are reported at 25 ℃ for a wide range of ethanol-water and methanol-water solvent compositions. The Grunwald-Winstein plots of first-order rate constants for p-methoxyphenyl chloroformate with YCl (based on 1-adamantyl chloride) show marked dispersions into three separate curves for the three aqueous mixtures with a small m value and a rate maximum for aqueous alcohol solvents. Third-order rate constants, kww, kaw, kwa and kaa were calculated from the observed kww and kaa values together with kaw and kwa calculated from the intercept and slope of the plot of 1/S vs. [alcohol]/[water]. The calculated rate constants, kcalc and mol % of ester agree satisfactorily with those of the observed rate constants, kobs and mol % of ester, supporting the stoichiometric solvation effect analysis. The kinetic solvent isotope effects determined in water and methanol are consistent with the proposed mechanism of the general base catalyzed carbonyl addition-elimination.

Michael-type Reactions of 1-(X-substituted phenyl)-2-propyn-1-ones with Alicyclic Secondary Amines in MeCN and H2O: Effect of Medium on Reactivity and Transition-State Structure

  • Kim, Song-I;Hwang, So-Jeong;Park, Yoon-Min;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권5호
    • /
    • pp.1199-1203
    • /
    • 2010
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for Michael-type reactions of 1-(X-substituted phenyl)-2-propyn-1-ones (2a-f) with a series of alicyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. The $k_N$ value increases as the incoming amine becomes more basic and the substituent X changes form an electron-donating group (EDG) to an electron-withdrawing group (EWG). The Br${\o}$nsted-type plots are linear with ${\beta}_{nuc}$ = 0.48 - 0.51. The Hammett plots for the reactions of 2a-f exhibit poor correlations but the corresponding Yukawa-Tsuno plots result in much better linear correlations with ${\rho}$ = 1.57 and r = 0.46 for the reactions with piperidine while ${\rho}$ = 1.72 and r = 0.39 for those with morpholine. The amines employed in this study are less reactive in MeCN than in water for reactions with substrates possessing an EDG, although they are ca. 8 pKa units more basic in the aprotic solvent. This indicates that the transition state (TS) is significantly more destabilized than the ground state (GS) in the aprotic solvent. It has been concluded that the reactions proceed through a stepwise mechanism with a partially charged TS, since such TS would be destabilized in the aprotic solvent due to the electronic repulsion between the negative-dipole end of MeCN and the negative charge of the TS. The fact that primary deuterium kinetic effect is absent supports a stepwise mechanism in which proton transfer occurs after the rate-determining step.

Kinetic Study on Michael-type Reactions of 1-Phenyl-2-propyn-1-one with Alicyclic Secondary Amines: Effect of Medium on Reactivity and Mechanism

  • Hwang, So-Jeong;Park, Youn-Min;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권10호
    • /
    • pp.1911-1914
    • /
    • 2008
  • Second-order rate constants (kN) have been measured for Michael-type addition reactions of a series of alicyclic secondary amines to 1-phenyl-2-propyn-1-one (2) in MeCN at 25.0 ${\pm}$ 0.1 ${^{\circ}C}$. All the amines studied are less reactive in MeCN than in $H_2O$ although they are more basic in the aprotic solvent by 7-9 p$K_a$ units. The Bronsted-type plot is linear with $\beta_{nuc}$ = 0.40, which is slightly larger than that reported previously for the corresponding reactions in $H_2O$ ($\beta_{nuc}$ = 0.27). Product analysis has shown that only E-isomer is produced. Kinetic isotope effect is absent for the reactions of 2 with morpholine and deuterated morpholine (i.e., $k^H/k^D$ = 1.0). Thus, the reaction has been concluded to proceed through a stepwise mechanism, in which proton transfer occurs after the rate-determining step. The reaction has been suggested to proceed through a tighter transition state in MeCN than in H2O on the basis of the larger $\beta_{nuc}$ in the aprotic solvent. The nature of the transition state has been proposed to be responsible for the decreased reactivity in the aprotic solvent.

아세틸콜린에스터라제 촉매에 의한 티오에스테르의 가수분해 반응 메카니즘 연구 (Reaction Mechanism of Acetylcholinesterase Catalyzed Hydrolysis of Thiocholine Esters)

  • 정대일;최순규;이용균;박유미;곽문정;신영주;최병욱;이봉호;한정태
    • 생명과학회지
    • /
    • 제12권1호
    • /
    • pp.32-42
    • /
    • 2002
  • 합성된 hexanoylthiocholine을 기질로 하여 butyrylcholinesterase와의 반응을 연구하였다. 기질의 농도 변화에 따른 초기반응속도 관찰을 통해 아실기의 탄소수가 증가함에 따라 반응성은 감소하나 $K_{m}$ 값은 0.140(mM)으로 더 강한 ES 복합체를 형성함을 알 수 있었다. Hexanoylthio-choline의 촉매화된 acetylcholinesterase 가수분해에 대한 pH-V/K profile에서 p $K_{a}$ 값 4.974$\pm$0.02을 얻었다. 이는 최근 문헌의 보고와 상통하는 것으로 p $K_{a}$ =6.2~6.4를 갖는 잔류물의 기본형에 활성이 의존하는 것으로부터 하나의 잔류물 또는 p $K_{a}$ =4.7~5.0을 갖는 잔류물들의 촉매작용으로 계통적인 자리밀림을 보여준다. 이는 촉매화된 BChE의 활성영역 esteratic site 주변에 긴 사슬 아실기의 가수분해에 관여하는 새로운 활성영역이 존재함을 밝히는 증거이다. 분자 조형은 기질의 아실기의 탄소수에 따라 acetylcholinesterase에 의해 표현되어지는 반응과정의 변화의 합리성을 제공한다. 본 연구에서는 한국과학기술원 도핑컨트롤센터와 연계하여 acetylcholinesterase와 기질인 acylthiocholine과의 입체적으로 둘러싸인 acyl-binding site를 분자 조형하고자 노력 중에 있다.

Acetylcholinesterase(AChE)-Catalyzed Hydrolysis of Long-Chain Thiocholine Esters: Shift to a New Chemical Mechanism

  • Jung, Dai-Il;Shin, Young-Ju;Lee, Eun-Seok;Moon, Tae-sung;Yoon, Chang-No;Lee, Bong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권1호
    • /
    • pp.65-69
    • /
    • 2003
  • The kinetic and chemical mechanisms of AChE-catalyzed hydrolysis of short-chain thiocholine esters are relatively well documented. Up to propanoylthiocholine (PrTCh) the chemical mechanism is general acid-base catalysis by the active site catalytic triad. The chemical mechanism for the enzyme-catalyzed butyrylthiocholine(BuTCh) hydrolysis shifts to a parallel mechanism in which general base catalysis by E199 of direct water attack to the carbonyl carbon of the substrate. [Selwood, T., et al. J. Am. Chem. Soc. 1993, 115, 10477- 10482] The long chain thiocholine esters such as hexanoylthiocholine (HexTCh), heptanoylthiocholine (HepTCh), and octanoylthiocholine (OcTCh) are hydrolyzed by electric eel acetylcholinesterase (AChE). The kinetic parameters are determined to show that these compounds have a lower Michaelis constant than BuTCh and the pH-rate profile showed that the mechanism is similar to that of BuTCh hydrolysis. The solvent isotope effect and proton inventory of AChE-catalyzed hydrolysis of HexTCh showed that one proton transfer is involved in the transition state of the acylation stage. The relationship between the dipole moment and the Michaelis constant of the long chain thiocholine esters showed that the dipole moment is the most important factor for the binding of a substrate to the enzyme active site.

Marked Difference in Solvation Effects and Mechanism between Solvolyses of Substituted Acetylchloride with Alkyl Groups and with Aromatic Rigns in Aqueous Fluorinated Alcohol and in 2,2,2-Trifluoroethanol-Ethanol Solvent Systems

  • Oh, Yung-Hee;Jang, Gyeong-Gu;Lim, Gyi-Taek;Ryu, Zoon-Ha
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권8호
    • /
    • pp.1089-1096
    • /
    • 2002
  • Solvolyses rate constants of trimethylacetyl chloride (2), isobutyryl chloride (3), diphenylacetyl chloride (4) and p-methoxyphenylacetyl chloride (5) in 2,2,2-trifluoroethanol (TFE)-water, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)-water and TFE-et hanol solvent systems at $10^{\circ}C$ are determined by a conductimetric method. Kinetic solvent isotope effects (KSIE) are reported from additional kinetic data for methanolyses of various substituted acetylchlorides in methanol According to the results of those reactions analyzed in terms of rate-rate profiles,extended Grunwald-Winstein type correlations, application of a third order reaction model based a general base catalyzed (GBC) and KSIE values. Regardless of the kind of neighboring groups (CH3- or Ph-groups) of reaction center, for aqueous fluorinated alcohol systems, solvolyses of 2, 3, 4, and 5 were exposed to the reaction with the same mechanism (a loose SN2 type mechanism by electrophilic solvation) controlled by a similarity of solvation of the transition sate (TS). Whereas, for TFE-ethanol solvent systems, the reactivity depended on whether substituted acetyl chloride have aromatic rings (Ph-) or alkyl groups (CH3-); the solvations by the predominant stoichiometric effect (third order reaction mechanism by GBC and/or by push-pull type) for Ph- groups (4 and 5) and the same solvation effects as those shown in TFE-water solvent systems for CH3- groups (2 and 3) were exhibited Such phenomena can be interpreted as having relevance to the inductive effect ( $\sigmaI)$ of substituted groups; the plot of log (KSIE) vs. ${\sigma}I$ parameter give an acceptable the linear correlation with r = 0.970 (slope = 0.44 $\pm$ 0.06, n = 5).

Kinetic and Mechanistic Studies of Oxidation of an Antiallergic Drug with Bromamine-T in Acid and Alkaline Media

  • Puttaswamy, Puttaswamy;Sukhdev, Anu
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3544-3550
    • /
    • 2012
  • Cetrizine dihydrochloride (CTZH) is widely used as an anti-allergic drug. Sodium N-bromo-p-toluenesulfonamide or bromamine-T (BAT) is the bromine analogue of chloramine-T (CAT) and is found to be a better oxidizing agent than CAT. In the present research, the kinetics of oxidation of CTZH with BAT in acid and alkaline media was studied at 313 K. The experimental rate laws obtained are: -d[BAT]/dt=$k[BAT][CTZH]^{0.80}[H^+]^{-0.48}$ in acid medium and -d[BAT]/dt=$k[BAT][CTZH]^{0.48}[OH^-]^{0.52}[PTS]^{-0.40}$ in alkaline medium where PTS is p-toluenesulfonamide. Activation parameters and reaction constants were evaluated. The solvent isotope effect was studied using $D_2O$. The dielectric effect is positive. The stoichiometry of the reaction was found to be 1:1 and the oxidation products were identified as 4-chlorobenzophenone and (2-piperazin-1-yl-ethoxy)-acetic acid in both media. The rate of oxidation of CTZH is faster in acid medium. Suitable mechanisms and related rate laws have been worked out.

Stoichiometric Solvation Effects. Product-Rate Correlation for Solvolyses of Phenyl Chloroformate in Alcohol-Water Mixtures

  • 구인선;양기율;강금덕;오혁근;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권6호
    • /
    • pp.520-524
    • /
    • 1996
  • Solvolyses of phenyl chloroformate in water, D2O, CH3OD, 50% D2O-CH3OD, and in aqueous binary mixtures of acetone, ethanol and methanol are investigated at 25.0 ℃. Product selectivities are reported at 25 ℃ for a wide range of ethanol-water and methanol-water solvent compositions. The Grunwald-Winstein plots of first-order rate constants for phenyl chloroformate with YCl (based on 2-adamantyl chloride) show marked dispersions into three separate lines for the three aqueous mixtures with a small m value (m< 0.2) and a rate maximum for aqueous alcohol solvents. Third-order rate constants, kww, kaw, kwa and kaa were calculated from the observed kww and kaa values together with kaw and kwa calculated from the intercept and slope of the plot of 1/S vs. [alcohol]/[water]. The calculated rate constants, kcalc and mol % of ester agree satisfactorily with those of the observed rate constants, kobs and mol % of ester, supporting the stoichiometric solvation effect analysis. The kinetic solvent isotope effects determined in water and methanol are consistent with the proposed mechanism of the general base catalyzed and/or carbonyl addition for phenyl chloroformate solvolyses based on mass law and stoichiometric solvation effect studies.

A Mechanistic Study on Addition Reactions of Alicyclic Amines to 3-Butyn-2-one

  • 음익환;이정숙;육성민
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권7호
    • /
    • pp.776-779
    • /
    • 1998
  • Second-order rate constants have been measured spectrophotometrically for the addition reaction of a series of alicyclic amines to 3-butyn-2-one to yield their respective enamines at 25.0 'C. The reactivity of the amines increases with increasing the basicity of the amines. However, the Bronsted-type plot obtained exhibits a downward curvature as the basicity of the amines increases, i.e. βnuc decreases from 0.3 for low basic amines (pKa < 9) and to 0.1 for highly basic amines (pKa > 9). Such a curvature in the Bronsted-type plot is clearly indicative of a change in the reaction mechanism or transition state structure. From the corresponding reactions run in D2O, the magnitude of kinetic isotope effect (KIE) has been calculated to be about 0.8 for highly basic amines and 1.21 for weakly basic amines. The difference in the magnitude of KIE also supports a change in the reaction mechanism or transition state structure upon changing the basicity of the amines. Furthermore, the small KIE clearly suggests that H+ transfer is not involved in the rate-determining step, i.e. the addition reaction is considered to proceed via a stepwise mechanism in which the attack of the amines to the acetylene is the rate-determining step. The curvature in the Bronsted-type plot has been attributed to a change in the degree of bond formation between the amine and the acetylene.