• Title/Summary/Keyword: Kinetic instability

Search Result 65, Processing Time 0.023 seconds

Effect of Gelatin on the Stability of Heavy Chain Monoclonal Antibody Production from Plant Suspension Cultures

  • Ryland, J.;Robert, P.;Michael, Linzmaier;Lee, James M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.449-454
    • /
    • 2000
  • The heavy chain monoclonal antibody (HC MAb) was produced in suspension cultures of genetically modified Nicotiana tabacum. The HC MAb secreted to the medium was unstable due to unfavorable interactions in the plant cell medium. The addition of gelatin (5g/l) stabilized the extracellular HC MAb and increased its production 10-fold. A kinetic model was developed describing the interaction between the secretedprotein and the stabilizer. The model accounted for the inactivation of the protein by simple aggregation and general instability. It was assumed that the secreted protein and the stabilizer form a stable complex. Culturing the cells semicontinuously could further increase the productivity of HC MAb.

  • PDF

Segregational Instability of a Recombinant Plasmid pDML6 in Streptomyces lividans

  • LEE, JUNG HYUN;JAE DEOG JANG;KYE JOON LEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.129-134
    • /
    • 1992
  • Segregational instability of a recombinant plasmid, pDML6, encoding extracellular $\beta$-lactamase in Streptomyces lividans PD6 was characterized by growth kinetic analysis. The quantitative determination of the plasmid harbored in the mycelia was evaluated with mycelia fragmented mechanically, and also with colonies regenerated from protoplasts. Conditions for the formation of protoplasts and regeneration of protoplasts were established. The maximal specific growth rates of the host strain and the plasmid-harboring strain in a chemically defined medium without selection pressure were the same. The probability of plasmid loss from the harbouring cells was higher at higher growth rates. Mathematical models for the prediction of cell growth, substrate uptake, and accumulation of the cloned gene product were developed.

  • PDF

A Numerical Experiment on the Inter-annual Variation Induced by the Current in a Basin with Dimension Comparable to the East Sea

  • Cho Kyoung-Ho;Seung Young Ho
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.2
    • /
    • pp.163-171
    • /
    • 2000
  • A series of numerical experiments are performed to examine the generation of inter-annual variations by an inertial current in an idealized semi-enclosed basin with dimension comparable to that of the East Sea. Model results indicate that the inter-annual variations dominate the kinetic energy spectrum with a peak around the time scales of 2-3 years. These variations are mostly due to the westward propagating meanders and large eddies induced by the instability of current, indicating their dependency on the eddy-resolving capacity of the model. They are generated in the interior of the basin but their energy is largely confined near the western boundary such that the east-west dimension of the basin cannot be considered as a critical factor as long as the basin covers enough western boundary region. Overall, this study suggests that the inter-annual variation observed in the East Sea is due to the meandering and large eddies induced by the instability of the current.

  • PDF

Magnetopause Waves Controlling the Dynamics of Earth's Magnetosphere

  • Hwang, Kyoung-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Earth's magnetopause separating the fast and often turbulent magnetosheath and the relatively stagnant magnetosphere provides various forms of free energy that generate low-frequency surface waves. The source mechanism of this energy includes current-driven kinetic physical processes such as magnetic reconnection on the dayside magnetopause and flux transfer events drifting along the magnetopause, and velocity shear-driven (Kelvin-Helmholtz instability) or density/pressure gradient-driven (Rayleigh-Taylor instability) magnetohydro-dynamics (MHD) instabilities. The solar wind external perturbations (impulsive transient pressure pulses or quasi-periodic dynamic pressure variations) act as seed fluctuations for the magnetopause waves and trigger ULF pulsations inside the magnetosphere via global modes or mode conversion at the magnetopause. The magnetopause waves thus play an important role in the solar wind-magnetosphere coupling, which is the key to space weather. This paper presents recent findings regarding the generation of surface waves (e.g., Kelvin-Helmholtz waves) at the Earth's magnetopause and analytic and observational studies accountable for the linking of the magnetopause waves and inner magnetospheric ULF pulsations, and the impacts of magnetopause waves on the dynamics of the magnetopause and on the inner magnetosphere.

Estimation and Sensitivity Analysis of Kinetic Parameters for Plasmid Stability in Continuous Culture of a Recombinant Escherichia coli Harboring trp-operon Plasmid

  • NAM, SOO WAN;BYUNG KWAN KIM;JUNG HOE KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.13-19
    • /
    • 1994
  • A model equation to describe the plasmid instability in recombinant Escherichia coli fermentation is proposed. The equation allows one to estimate easily the two model parameters; (1) the difference in the specific growth rates between plasmid-free cells and plasmid-harboring cells ($\delta$), and (2) the probability of plasmid loss by plasmid-harboring cells ($\rho$). The estimated values of $\delta and \rho$ were in the range of 0.02-0.07 and $10^{-3}-10^{-5}$, respectively, and were strongly dependent on the dilution rate. As another parameter, the ratio of specific growth rates of plasmid-free cells and plasmid-harboring cells ($\alha$) was calculated and the result showed the highest value of 1.28 at the lowest dilution rate of 0.075 $hr^{-l}$, examined in this work. By the sensitivity analyses on the estimates of $\delta and \rho$, it was found that the growth rate difference ($\delta$) affected the plasmid instability more seriously than the probability of plasmid loss ($\rho$). Furthermore, the profound instability of plasmid at low dilution rate could be explained by the high values of $\alpha and \rho$.

  • PDF

Eddy Kinetic Energy in the East Sea Estimated from Topex/Poseidon Altimeter Measurements

  • Cho Kwangwoo;Cho Kyu-Dae
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.3
    • /
    • pp.219-228
    • /
    • 2002
  • Based on the five-year (October 1992 through September 1997) Topex/Poseidon altimeter measurements, we describe the statistical characteristics of the eddy variability in the East Sea in terms of sea surface height anomaly, slope variability, and eddy kinetic energy (EKE). The sea surface height anomalies in the East Sea are produced with standard corrections from Topex/Poseidon measurements. In order to eliminate the high frequency noise in the sea surface height anomaly data, the alongtrack height anomaly data was filtered by about 40 km low-pass Lanczos filter based on Strub et al. (1997) and Kelly et a1. (1998). We find that there exists a distinct spatial contrast of high eddy variability in the south and low eddy energy in the north, bordering the Polar Front. In the northwestern area $(north\;of\;39^{\circ}N\;and\;west\;of\;133^{\circ}E)$ from the Polar Front where the eddies frequently appear, the EKE is also considerabel. The high kinetic energy in the southern East Sea reveals a close connection with the paths of the Tsushima Warm Current, suggesting that the high variability in the south is mainly generated by the baroclinic instability process of the Tsushima Warm Current. This finding is supported by other studies (Fu and Zlontnicki, 1989; Stammer, 1997) wh.ch have shown the strong eddy energy coupled in the major current system. The monthly variation of the EKE in both areas of high and low eddy variability shows a strong seasonality of a high eddy kinetic energy from October to February and a relatively low one from March to September. The sequential pattern of wind stress curl shows resemblance with those of monthly and seasonal EKE and the two sequences have a correlation of 0.82 and 0.67, respectively, providing an evidence that wind stress curl can be the possible forcing for the monthly and seasonal variation of the EKE in the East Sea. The seasonality of the EKE also seems to correlate with the seasonality of the Tsushima Warm Current. There also exists the large spatial and interannual variabilities in the EKE.

Direct Solving the Boltzmann Equation for Supersonic Jet Problems with Instabilities

  • Aristov V.V.;Zabelok S.A.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.268-269
    • /
    • 2003
  • The Boltzmann kinetic equation is solved directly by means of the conservative splitting method. Underexpanded supersonic free jet flows with small Knudsen numbers are studied. In this numerical simulation features intrinsic to appropriate experiments are observed. Streamwise vortices in a mixing layer and chaotic downstream temporal-spatial fluctuations of microscopic quantities with large amplitude are obtained.

  • PDF

Instability Analysis of Counterflow Diffusion Flames with Radiation Heat Loss (복사 열손실을 받는 대향류 확산화염의 불안정성 해석)

  • Lee, Su-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.857-864
    • /
    • 2012
  • A linear stability analysis of a diffusion flame with radiation heat loss is performed to identify linearly unstable conditions for the Damk$\ddot{o}$hler number and radiation intensity. We adopt a counterflow diffusion flame with unity Lewis number as a model. Near the kinetic limit extinction regime, the growth rates of disturbances always have real eigenvalues, and a neutral stability condition perfectly falls into the quasi-steady extinction. However, near the radiative limit extinction regime, the eigenvalues are complex, which implies pulsating instability. A stable limit cycle occurs when the temperatures of the pulsating flame exceed the maximum temperature of the steady-state flame with real positive eigenvalues. If the instantaneous temperature of the pulsating flame is below the maximum temperature, the flame cannot recover and goes to extinction. The neutral stability curve of the radiation-induced instability is plotted over a broad range of radiation intensities.

Transient Stability assessment in the real power system using Energy Function. (에너지함수를 이용한 실계통에의 과도 안정도 평가 적용)

  • Kwon, Tae-Won;Lee, Kyung-Jae;Lee, Byung-Ha;Ham, Wan-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.153-156
    • /
    • 1992
  • Transient stability analysis of Korea Electric power Corporation(KEPCO) system is conducted by time simulation method, and the method is robust and reliable. But, time simulation consumes enormous computing resources and engineering time, and it does not provide a measure of the degree of stability of the system. Therefore, this method does not apply to every changed condition appropriately and quickly in planning and operating. And Transient Energy Function (TEF) method whis can assess quickly and quantatively the degree of stability of the system and which judges the stability and the instability to analyse transient dynamic charater of the system by mutual changing kinetic energy and potential energy, is developed. TEF method analyses the first Swing transient stability of the system by using the thought that if after disturbance happening, the increase of all the rotator kinetic energy changes into the potential energy after diturbance clearing, the system is stable, otherwise the system is unstable. This paper represents the availabiIity of the TEF method by comparing with time simulation method on the two cases.

  • PDF

The Onset of Tayler-Görtler Vortices in Impulsively Decelerating Circular Flow

  • Cho, Eun Su;Kim, Min Chan
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.609-613
    • /
    • 2015
  • The onset of instability induced by impulsive spin-down of the rigid-body flow placed in the gap between two coaxial cylinders is analyzed by using the energy method. In the present stability analysis the growth rate of the kinetic energy of the base state and also that of disturbances are taken into consideration. In the present system the primary flow is a transient, laminar one. But for the Reynolds number equal or larger than a certain one, i.e. $Re{\geq}Re_G$ secondary motion sets in, starting at a certain time. For $Re{\geq}Re_G$ the dimensionless critical time to mark the onset of vortex instabilities, ${\tau}_c$, is here presented as a function of the Reynolds number Re and the radius ratio ${\eta}$. For the wide gap case of small ${\eta}$, the transient instability is possible in the range of $Re_G{\leq}Re{\leq}Re_S$. It is found that the predicted ${\tau}_c$-value is much smaller than experimental detection time of first observable secondary motion. It seems evident that small disturbances initiated at ${\tau}_c$ require some growth period until they are detected experimentally.