• 제목/요약/키워드: Kinetic energy distribution

검색결과 204건 처리시간 0.026초

통기식 디스크 브레이크의 방열 성능에 관한 수치적 연구 (A Numerical Study of Thermal Performance in Ventilated Disk Brake)

  • 김진택;백병준
    • Tribology and Lubricants
    • /
    • 제17권5호
    • /
    • pp.358-364
    • /
    • 2001
  • Disk brake system transforms a large amount of kinetic energy to thermal energy in a short time. As the size and speed of automotive increases in recent years, the disk brakes absorbs more thermal energy. And this thermal energy can cause an unacceptable braking performance due to the high transient temperature, that is attained at the friction surface of brake disk and pad. Although these high temperatures are one of the biggest problems. In this study, the overall thermal behavior of ventilated disk brake system was investigated by numerical method. The 3-Dimensional unsteady model was simulated by using a general purpose software package “FLUENT” to obtain the temperature distributions of disk and pad. The model includes the more realistic braking method, which repeats braking and release. The effects of several parameters such as the repeated braking, inlet air velocity and thermal conductivity on the temperature distribution were investigated.

DENSITY STRUCTURE AND STABILITY OF THE SUBCOMPONENTS IN GIANT MOLECULAR CLOUD COMPLEXES

  • Yoo, Chin-Woo;Hong, Seung-Soo
    • 천문학회지
    • /
    • 제19권1호
    • /
    • pp.33-49
    • /
    • 1986
  • Radial distribution of internal density has been determined for thirteen subclouds in the three giant molecular cloud complexes accompanying Mon OB1, Mon OB2 and CMa OB1 associations, We modeled their radial density structures with the density distribution of isothermal gas spheres. Most of the subclouds, nine out of the thirteen, are well described by isothermal spheres of single component; while the rest four require an additional component. Total mass and potential energy of each subcloud are also derived from the radial density structure; thermal energy and internal velocity dispersion required for sustaining the density structure are deduced from the isothermal gas model. Our derived masses of the clouds are comparable to the values determined by Blitz (1978) under LTE assumption. This agreement suggests that the correction factor for non-LTE effect on mass-estimate is not far from unity. The ratio of the gravitational potential energy to the kinetic energy of thermal motion is as large as 250; hence the thermal motion alone cannot support these clouds against the gravity. Being supported by turbulence motion with velocities of six to seven times the thermal velocity, the clouds of one-component type seem to be in equilibrium with the gravity; while the clouds of two-component type are likely to be in the stage of gravitational collapse.

  • PDF

PIV 계측에 의한 고주파수 초음파 유동장 해석에 관한 연구 (A Study on the Flow Field Analysis with a High-frequency Ultrasonic by PIV Measurement)

  • 이상범;송민근;손승우;정광수;주은선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.727-732
    • /
    • 2001
  • The purpose of this study is to compare the time mean velocity distribution, the time mean kinetic energy, and the time mean turbulence intensity between vertical and horizontal flow fields in a coaxial circular pipe by PIV measurement. Experiments are performed at a Reynolds number 2,000, measuring regions divided as the section regions A, B, C, D in flow fields. The angle of the high-frequency ultrasonic is selected in the direction of $45^{\circ}$ to the flow axes and it is reflected several times. In results, it is clarified that the effect of gravity is given in the vertical flow field compared with the horizontal flow field and the ultrasonic affects the turbulence enhancement. And kinetic energy and turbulence intensity with ultrasonic are shown slightly bigger than those in flow field without it.

  • PDF

PZT actuator를 이용한 외팔보의 능동진동제어 (Active control of vibration of cantilever beams using PZT actuators)

  • 신창주;홍진숙;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.247-252
    • /
    • 2008
  • This paper presents an active vibration control of cantilever beams under disturbances by a primary force. A direct velocity feedback control using a pair of PZT actuator and a velocity sensor is considered. Variation of the stability and performance with the locations of the sensor/actuator pair is investigated. It is found that the maximum gain varies with the locations of the sensor/actuator pair significantly. The maximum gain shows a symmetric distribution along the beam length with respect to the center point, although the boundary condition of the beam is unsymmetric. The control performance is affected by the location of the primary force as well as the location of the sensor/actuator pair. The active control system can more effectively reduce the vibration when the primary force is located close to the fixed boundary.

  • PDF

동심원관내에서 초음파가 가진된 유동특성의 PIV계측에 의한 연구 (A Study on Flow Characteristics with Ultrasonic Forcing in a Coaxial Circular Pipe by PIV Measurement)

  • 구자훈;박영호;최우창;송민근;주은선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.639-644
    • /
    • 2000
  • An experiment on the enhancement of turbulent flow with ultrasonic forcing was carried out by using PIV measurement in a coaxial circular pipe which could offer characteristics of the turbulence flow plentifully through its jet. A large transparent acryl tank and a coaxial circular pipe nozzle were made for the above research. city water of $25^{\circ}C$ was selected as an experimental liquid and the front flow field of the coaxial circular pipe was divided vertically as 3 measuring regions to observe characteristics of flow phenomena. characteristics of fluid flow such as velocity vector distribution, kinetic energy, turbulent intensity and etc. were visualized, observed, examined and considered at 5 kinds of Re No. such as $Re=1{\times}10^3,\;2{\times}10^3,\;3{\times}10^3,\;5{\times}10^3,\;1{\times}10^4$. In result it was proved that ultrasonic vibration affected the enhancement of turbulent flow.

  • PDF

직사각형 프리즘 주위의 유동특성에 대한 경계층 두께의 영향 (Effect of Boundary Layer Thickness on the Flow Characteristics around a Rectangular Prism)

  • 지호성;김경천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.306-311
    • /
    • 2001
  • Effect of boundary layer thickness on the flow characteristics around a rectangular prism has been investigated by using a PIV(Particle Image Velocimetry) technique. Three different boundary layers(thick, medium and thin)were generated in the Atmospheric Boundary Layer Wind Tunnel at Pusan National University. The thick boundary layer having 670mm thickness was generated by using spires and roughness elements. The medium thickness of boundary layer$(\delta=270mm)$ was the natural turbulent boundary layer at the test section with fully long developing length(18m). The thin boundary layer with 36.5mm thickness was generated by on a smooth panel elevated 70cm from the wind tunnel floor. The Reynolds number based on the free stream velocity and the height of the model was $7.9{\times}10^3$. The mean velocity vector fields and turbulent kinetic energy distribution were measured and compared. The effect of boundary layer thickness is clearly observed not only in the length of separation bubble but also in the reattachment points. The thinner boundary layer thickness, the higher turbulent kinetic energy peak around the model roof. It is strongly recommended that the height ratio between model and approaching boundary layer thickness should be a major parameter.

  • PDF

SUBOFF 모형 후방 난류항적의 수치 시뮬레이션 (Numerical Simulation of Turbulent Wake Behind SUBOFF Model)

  • 나영인;방형도;박종천
    • 대한조선학회논문집
    • /
    • 제47권4호
    • /
    • pp.517-524
    • /
    • 2010
  • This paper covers the numerical studies performed to investigate the characteristics of turbulent wake generated by a submarine, SUBOFF model. A SUBOFF model assumed as an axial-symmetric body was used to generate wake. The numerical simulation was performed by using a commercial S/W, FLUENT, with the same condition as the experiments by Shin et al.(2009). Mainly the cross-sectional distribution of the time-averaged mean wake and turbulent kinetic energy was compared with the experiments. Both results are agreed well with each other in the propeller wake section, but the agreement between both is not so satisfied in the far wake field. It means that more numerous number of grid points and their concentration should be required in that field.

축류송풍기의 스윕각이 소음에 미치는 영향에 대한 연구 (A Study on the Effect of Sweep Angle of Axial Fan on Its Noise)

  • 최재호;김광용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.365-370
    • /
    • 2000
  • A computational study on the effect of sweep angle of axial fan on its noise is performed in the present paper. The forward swept axial fan was designed by numerical optimization method incorporated with three dimensional flow analysis. The objective function was defined by the ratio of generation rate of turbulent kinetic energy to pressure head. And, two variables related with sweep angle distribution are used for design variables. The swept fan has better performance characteristics and noise level. The experimental result shows that spectrums of no-sweet and swept fans have differences in the blade passage frequency, especially in the broadband. And the overall noise level of swept fan is lower 10dB(A) than that of no-sweep fan. For the comparison of flow fields between no-sweep fan and swept fan, CFX-TASCflow computational fluid dynamics software is used. Standard k-${\varepsilon}$ model is used for the turbulence model. Distributions of pressure and turbulent kinetic energy distributions are compared in order to find what happen in the low-noise swept fan.

  • PDF

SUBOFF 모형 후방 난류항적 계측 및 실험식 유도 (Measurement of Turbulent Wake behind a SUBOFF Model and Derivation of Experimental Equations)

  • 신명수;문일성;나영인;박종천
    • 한국군사과학기술학회지
    • /
    • 제14권2호
    • /
    • pp.198-204
    • /
    • 2011
  • This paper presents the experimental result to investigate the characteristics of turbulent wake generated by submarine. A SUBOFF nude model which was assumed as an axial -symmetric body was used to create wake, and a thin strut was mounted on the top of the model. The experiments were conducted in a circulating water channel(CWC), and a hot-film was used to measure the turbulence in wake cross-section at the distance range of 0.0~2.0L from the model. The hot film anemometer measured turbulent velocity fluctuations, and the timeaveraged mean velocity and turbulent intensity are obtained from the acquired time-series data. Measured results show well the general characteristics of turbulent intensity, kinetic energy and mean velocity distribution. Also, experimental equations are derived. These experimental equations show well the general characteristics of the turbulent wake behind the submerged body with simple configuration.

자항하는 SUBOFF 모형 난류항적 계측 및 실험식 유도 (Measurement of Turbulent Wake behind a Self-Propelled SUBOFF Model and Derivation of Experimental Equations)

  • 신명수;문일성;나영인;박종천
    • 한국군사과학기술학회지
    • /
    • 제14권3호
    • /
    • pp.364-371
    • /
    • 2011
  • This paper presents experimental results and derived experimental equations to investigate the turbulent wake characteristics generated by the self-propelled SUBOFF submarine model. A self-propelled SUBOFF model which was assumed as an axial-symmetric body was used to create wake, and a thin strut was mounted on the topside of the model. The experiments were conducted in a circulating water channel(CWC), and the hot-film was used to measure the turbulence in wake cross-section at the distance range of 0.0~2.0L from the model. The hot film anemometer measured turbulent velocity fluctuations, and the time-averaged mean velocity and turbulent intensity are obtained from the acquired time-series data. Measured results show well the general characteristics of turbulent intensity, kinetic energy and mean velocity distribution. Also, this paper presents derived experimental equations, which is extended result to the reference [1]. These experimental equations show well the general characteristics of the turbulent wake behind the self-propelled submerged body.