• Title/Summary/Keyword: Kinetic control

Search Result 406, Processing Time 0.022 seconds

Kinetic behavior of sophoricoside by gas chromatography/mass spectrometry in rats

  • Jeon, Hee-Kyung;Park, Hae-Yeon;Kim, Youn-Jung;Kim, Youngsoo;Kim, Mi-Kyung;Lee, Seung-Ho;Jung, Sang-Hun;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.189-189
    • /
    • 2003
  • Sophoricoside was isolated as the inhibitor of IL-5 bioactivity from Sophora japonica (Leguminosae). To develope as novel anti-allergic drug, kinetic study was performed in rats. Serum concentration of sophoricoside was measured by gas chromatography-mass spectrometry (GC/MS) in male Sprague-Dawley rat (250${\pm}$10g, n=5) after oral administration of sophoricoside (100mg/kg). The recovery of sophoricoside after extraction and concentration was above 95 % from rat serum. Between-day precision(relative standard deviation 2.2-2.8%) and within-day precision(2.0-12.1%) were determined from replicate analysis of a spiked control and incurred serum sample. The detection limits of sophoricoside in this serum was approximately 0.1 ng/mL. The Pharmacokinetic parameters were derived from the noncompartmental analysis. The C$\_$max/(3.56${\pm}$0.34 $\mu\textrm{g}$/mL) value for sophoricoside in male rat was observed at 7.6 h. The elimination half-life(t$\_$1/2/) of sophoricoside was approximately 4.47 h, the mean residence time (MRT) averaged 10.75 h, the total body clearance (Cl) averaged 0.0042 mL/min/kg. and the area under the serum concentration-time curve (AUC$\_$0-$\infty$/) was 24.93 $\mu\textrm{g}$$.$hr/mL.

  • PDF

Optimal Transducer Placement for Health Monitoring of Large Structural System (대형 구조물의 상설 감지를 위한 감지기의 최적 위치)

  • 황충열;허광희
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.157-165
    • /
    • 1997
  • This research aims to develop an algorithm of optimal transducer placement for health monitoring of large structural system. The structural vibration response-based health monitoring is considered one of the best for the system which requires a long-term, continuous monitoring. In its experimental modal testing, however, it is difficult to decide on the measurement locations and their number, especially for complex structures, which have a major influence on the quality of the results. In order to minimize the number of sensing operations and optimize the transducer location while maximizing the accuracy of results, this paper discusses about an optimum transducer placement criterion suitable for the identification of structural damage for continuous health monitoring. As a criterion algorithm, it proposes the Kinetic Energy Optimization Technique (EOT), and then addresses the numerical issues which are subsequently applicable to actual experiment where a bridge model is used. By using the experimental data, it compares the EOT with the EIM(Effective Indefence Method) which is generally used to optimize the transducer placement for the damage identification and control purposes. The comparison conclusively shows that the EOT algorithm proposed in this paper is preferable when a structure is to be instrumented with fewer sensors for monitoring purpose.

  • PDF

Reaction Kinetic Study on Pyrolysis of Waste Polystyrene using Wetted Column Reactor (Wetted Column 반응기를 이용한 폴리스티렌 열분해 반응속도론적 연구)

  • You, Young Gil;Yoon, Byung Tae;Kim, Seong Bo;Choi, Myoung Jae;Choi, Cheong Song
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.535-539
    • /
    • 2008
  • Conversion to oil, yield of styrene and formation of side products such as ${\alpha}-methyl$ styrene, ethyl benzene, benzene, toluene, dimer and trimer were affected by residue formed during thermal degradation. Also, control of reaction temperature had a difficulty at the first stage. Thus, new reaction system using wetted-wall type reactor was proposed and examined on various parameters such as reaction temperature, feeding rate and removal velocity of formed vapor. Optimun condition was obtained from continuous thermal degradation using wetted-wall type reactor and reaction kinetic study was carried out at new type reactor.

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF

A Kinetic Study for Exopolysaccharide Production in Submerged Mycelial Culture of an Entomopathogenic Fungus Paecilomyces tenuipes C240 (동충하초 Paecilomyces tenuipes C240의 균사체 배양에 의한 세포외 다당체 생산의 동력학적 연구)

  • Xu Chung Ping;Yun Jong Won
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.15-20
    • /
    • 2005
  • The unstructured model was tested to describe mycelial growth, exopolysaccharide formation, and substrate consumption in submerged mycelial culture of Paeeiliomyees tenuipes C240. The Logistic equation for mycelial growth, the Luedeking-Piret equation for exopolysaccharide formation, and Luedeking­Piret-like equations for glucose consumptions were successfully incorporated into the model. The value of the key kinetic constants were: maximum specific growth rate ${\mu}m,\;0.7281\;h^{-1};$ growth­associated constant for exopolysaccharide production $(\alpha),\;0.1743g(g\;cells)^{-1}$; non-growth associated constant for exopolysaccharide production $(\beta),\;0.0019g(g\;cells)^{-1}\;;$ maintenance coefficient $(m_s),\;0.0572g\;(g\;cells)^{-1}$. When compared with batch experimental data, the model successfully provided a reasonable description for each parameter during the entire growth phase. The model showed that the production of exopolysaccharide in P. tenuipes C240 was growth-associated. The model tested in the present study can be applied to the design, scale-up, and control of fermentation process for other kinds of basidiomycetes or ascomycetes.

Diffusion-controlled Cure Kinetics of High Performance Epoxy/Carbon Fiber Composite Systems (확산속도에 따라 한계경화도를 갖는 에폭시/탄소섬유 복합재료의 경화반응 속도 연구)

  • 박인경;금성우;이두성;김영준;남재도
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.105-112
    • /
    • 2000
  • Using a commercial epoxy/carbon fiber composite prepreg (DMS 2224) as a model system, the cure kinetics of vitrifying thermoset system were analyzed by isothermal and dynamic-heating experiments. Focusing on the processing condition of high performance composite systems, a phenomenological kinetic model was developed by using differential scanning calorimetry (DSC) and reaction kinetics theories. The model system exhibited a limited degree of cure as a function of isothermal temperature seemingly due to the diffusion-controlled reaction rates. The diffusion-controlled cure reaction was incorporated in the development of the kinetic model, and the model parameters were determined from isothermal experiments. The first order reaction was confirmed from the characteristic shape of isothermal cure thermograms, and the activation energy wes 78.43 kJ/mol. Finally, the proposed model was used to predict a complex autoclave thermal condition, which was composed of several isothermal and dynamic-heating stages.

  • PDF

Physics on cancer and its curing

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.91-97
    • /
    • 2000
  • The conventional model did not take momentum conservation into consideration when the electron absorbs and emits the photons. II-ray provides momentum conservations on any directions of the entering photons, and also the electrons have radial momentum conservations and fully elastic bouncing between two atoms, in the new atom model. Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, for examples sexual motion, tidal motion, day and night etc. Because the radius of hydrogen atom's electron orbit is the order of 10$^{-11}$ m and the radia of the nucleons in the nucleus are the order of 10$^{-l4}$m and then the converging n-gamma rays to the nucleus have so great circular momentum, the electron can not have a circular motion. We can say without doubt that any elementary mass particle can have only linear motion because of the n-rays' hindrances, near the nucleus. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The h v is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. An understanding of the mechanisms responsible for the control of normal proliferation and differentiation of the various cell types which make up the human body will undoubtedly allow a greater insight into the abnormal growth of cells, A large body of biochemical evidence was eventually used to generate a receptor model with an external ligand binding domain linked through a single trans-membrane domain to the cytoplasmic tyrosine kinase and autophosphory-lation domains. The ligand induced conformational change in the external domain generates either a push-pull or rotational signal which is transduced from the outside to the inside of cell.l.ell.

  • PDF

The Characteristics of Obstacle Gaits in Female Elders after 12 Weeks of an Aquatic Exercise Program (12주간의 수중 운동을 수행 한 여성노인의 장애물 보행 특성)

  • Kim, Suk-Bum;Yu, Yeon-Joo
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.539-547
    • /
    • 2009
  • The purpose of this study was to investigate the changes of kinetic and kinematic parameters in obstacle gaits after 12 weeks of an aquatic exercise program. Eight female elders walked in four different heights of obstacles(0, 2.5, 5.1, & 15.2cm) on their self-selected speed. The ROM of hip was significantly increased after the aquatic exercise program. Swing and Stance duration were decreased. The step length was significantly increased and the step width was decreased. After the exercise program the clearance between the right foot and the top of obstacle(except 15.2cm) increased and the crossing speed was increased. The braking force, propulsive force, braking impulse, and propulsive impulse were significantly changed after the aquatic exercise program. The 12 weeks of the aquatic exercise program resulted in lower body strength and balance gains in female elders. The improvements were associated with changes in kinetic and kinematic parameters leading to an obstacle-crossing speed and a safer lower-limb control. The aquatic exercise program is suggested as an effective intervention to promote gait ability and prevent fall-related to the injuries.

The Effects of Breathing Control on Kinetic Parameters of Lower Limbs during Walking Motion in Korean Dance (한국무용 걸음체 동작 시 호흡의 사용유무가 하지의 운동역학적 변인에 미치는 영향)

  • Park, Yang-Sun;Jang, Ji-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.4
    • /
    • pp.627-636
    • /
    • 2009
  • This study aims to provide a scientific basis for the abstract beauty of dance by analyzing the effects of controlling the breath during the walking motion of Korean dance. The objective of the study is to determine the significance of breathing during Korean dance, as it is externally expressed and technologically segmented, let alone the internal beauty of Korean dance. The results of this study show that the position of the body center and ASIS during the walking motion that uses breath was lower than that of the walking motion that does not use the breath. In addition, in each replacement of the knee joint and ankle joint, a narrow angle, in which bending is used a lot, appeared during the walking motion that uses the breath, but not during the walking gesture that does not use the breath. This occurred during the bending motion. In the first peak point, the vertical ground reaction force during the walking motion that uses the breath was higher than that during the walking motion that does not use the breath.

Thermotherapy and Dynamic Warm-up on the Kinetic Parameters during Drop-landing (드롭랜딩 시 국소부위 온열처치와 동적 준비운동이 하지의 운동역학적 변인에 미치는 영향)

  • Kim, Sungmin;Song, Jooho;Han, Sanghyuk;Moon, Jeheon
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.4
    • /
    • pp.297-307
    • /
    • 2021
  • Objective: The aim of this study was to analyze kinetic variables between thermotherapy and dynamic warm-up during drop-landing. Method: Twenty male healthy subjects (Age: 21.85 ± 1.90 years, Height: 1.81 ± 0.06 cm, Weight: 68.5 ± 7.06 kg) underwent three treatments applied on the thermotherapy of femoral muscles and a dynamic warm-up. The thermotherapy was performed for 15 minutes while sitting in a chair using an electric heating pad equipped with a temperature control device. Dynamic warm-up performed 14 exercise, a non-treatment was sitting in a chair for 15 minutes. Core temperature measurements of all subjects were performed before landing at a height of 50 cm. During drop-landing, core temperature, joint angle, moment, work of the sagittal plane was collected and analyzed. All analyses were performed with SPSS 21.0 and for repeated measured ANOVA and Post-hoc was Bonferroni. Results: Results indicated that Thermotherapy was increased temperature than other treatments (p = .000). During drop-landing, hip joint of dynamic warm-up was slower for angular velocity (p < .005), and left ankle joint was fastest than other treatments (p = .004). Maximum joint moment of dynamic warm-up was smaller for three joints (hip extension: p = .000; knee flexion/extension: p = .001/.000; ankle plantarflexion: p = .000). Negative work of dynamic warm-up was smaller than other treatments (p = .000). Conclusion: In conclusion, the thermotherapy in the local area doesn't affect the eccentric contraction of the thigh. The dynamic warm-up treatment minimized the joint moment and negative work of the lower joint during an eccentric contraction, it was confirmed that more active movement was performed than other treatment methods.