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Optimal Transducer Placement for Health Monitoring of
Large Structural System
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Abstract

This research aims to develop an algorithm of optimal transducer placement for health monitoring of large
structural system. The structural vibration response-based health monitoring is considered one of the best
for the system which requires a long-term, continuous monitoring. In its experimental modal testing, howev-
er, it is difficult to decide on the measurement locations and their number, especially for complex structures,
which have a major influence on the quality of the results. In order to minimize the number of sensing opera-
tions and optimize the transducer location while maximizing the accuracy of results, this paper discusses
about an optimum transducer placement criterion suitable for the identification of structural damage for
continuous health monitoring. As a criterion algorithm, it proposes the Kinetic Energy Optimization Techni-
que (EOT), and then addresses the numerical issues which are subsequently applicable to actual experiment
where a bridge model is used. By using the experimental data, it compares the EOT with the EIM(Effective
Indefence Method) which is generally used to optimize the transducer placement for the damage identifica-
tion and control purposes. The comparison conclusively shows that the EQOT algorithm proposed in this paper
is preferable when a structure is to be instrumented with fewer sensors for monitoring purpose.
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1. Introduction

Aging infrastructural facilities like bridges
which form the life line of our countrys econo-
my are facing a severe crisis. Long service
lives, inadequate designs and increasing traffic
loads are responsible for the current state of
affairs. However bridges must still operate
without suddenly collapsing. Therefore, it is im-
perative that a continuous health monitoring
system, as shown in Fig. 1, be developed. Struc-
tural dynamics based damage detection and
monitoring have been successfully used for he-
alth monitoring'™*. Large civil structures in
terms of structural parameters also have close-
ly spaced mode shapes and resonance frequen-
cies which presents an additional challenge, and
high damping®. The primary transducer input
for health monitoring systems consist of an
array of accelerometers. However, in order to
make the system cost effective and to acquire
accurate modal parameters for large structural
system, it is necessary to develop optimal trans-
ducer placement. This paper discusses an opti-
mization technique based on the maximization

of the modal kinetic energy.
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Fig. 1 Automated health-monitoring system
(concept)
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Optimal placement of transducers on a struc-
ture has generated a lot of research®'?. Tradi-
tionally, large, flexible complex structures re-
quire precise transducer configurations for en-
abling the identification of their essential dyna-
mics. This is computationally intensive and re-
quires several hundred iterations for converg-
ing to the optimal configuration'*~'¥. Various
methods propose to minimize the invariant of
the estimated error covariance matrix'* ', The
error covariance matrix was adapted by Ka-
mmer into the Effective Independence Method
(EIM), which was based on the spatial indepen-
dence concept'”. The degree of freedom in the
candidate set can be reduced by eliminating lo-
cations that do not significantly contribute to
the linear independence of the mathematical
mode shapes. Basically, the EIM searches for
transducer configurations where the rank of
the measured matrix [&} @] is maximized to
minimize the error covariance matrix. In other
words, the Fisher Information matrix (@) is
maximized so that the covariance matrix be-
tween the displacement vector in the modal co-
ordinate(g) and the estimated modal displace-

ment(g) is minimized.

Min(Co) =E [(a—a)g—a)"] (D

Max(Q) = Max{[®: &1} (2)

where E denotes the expected value, @s rep-
resents a reduced set of the mathematical mode
shapes corresponding to the target modes. EIM
optimizes and selects a set of target modes for
identification of the structure based on FE
analysis. An initial candidate set of transducer
locations is also selected. These locations are
ranked based on their contribution to the linear
independence of corresponding FEM target
mode partitions. Locations that do not contrib-



ute are removed from the candidate set'®. EIM
guarantees the linear independency of identi-
fied modes and is computationally efficient.
However, the authors feel that optimizing the
transducer set for maximizing of the kinetic
energy of the structural system measured by
the transducers will provide more information
needed to identify the structural damage in

high damping.
2. Kinetic Energy Optimization Technique

The energy optimization technique algorithm
1s designed to improve the modal information as
maximizing the measured kinetic energy of the
structural system. The spatial independence of
the identified mode shapes is satisfied by the
sensing configuration obtained with the EOT
algorithm. The distribution of kinetic energy in

the system is
KE=Q"™MQ (3)

where @ is the measured mode shape vector.
After decomposition of the mass matrix, M, in
upper and lower triangular Cholesky factors,

the kinetic energy matrix can be derived as:

KE=U'y
where . ¥ =U@,and M = LU (4)
The matrix L and U denote the lower and
upper triangular Choleskey factor, The pro}
ection of the mode shapes on the reduced con-
figuration is denoted by
@ = Projection(®)

@ = Projection(¥) (5)

4349833
Similarly, the energy measured by a reduced
set of transducers is obtained from the initial
energy by removing the contribution of all
transducers which have been eliminated

E =9 (6)

The objective of the transducer placement is
to find a reduced configuration which maximiz-
es the measure of the kinetic energy of the
structure. It i1s desirable to stop eliminating the
transducers if it results in a rank deficiency of
the energy matrix. The column rank N of the
quantity KE is equal to the number of linearly
independent projected vectors in matrix @, a-
ssuming that the mass matrix is non-singular.
The problem is solved iteratively by the follow-
ing procedure. The eigenvalues A and eigenve-

ctors ¥ of the energy matrix are extracted.
KEV =¥ A (7)

Computin the eigenparis at each iteration of
the EOT procedure does not significantly in-
crease the computational cost because the ma-
trix KE is a square, symmetric, and positive-
definite matrix of size N. Then, the fractional
contributions of each remaining transducers

are assembled into the EQOT vector:

EOT = 3 [Fga "} (8)

=1..m

The transducer location with the minimal
contribution in the EOT vector is then selected
for removal. Subsequently, the contribution of
the removed transducer to the kinetic energy
matrix is deleted and the new matrix is checked
for rank deficiency. If the removal of the
transducer produces a rank deficiency it im-

plies that the transducer location in question
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cannot be removed. If removal of the transduc-
er did not produce a rank deficiency then the
transducer location is removed from the candi-
date set and the process repeated until one
arrives at the required number of transducers.
The quantity between brackets in equation (8)
represents a linear combination of the measu-
red mode shapes which is designed to achieve
orthonormal vectors, since it can be verified
that.

(TN T [TgA T =1 (9)

Furthermore, each EOT of the vector is a
heuristic measure of the contribution of each
transducer to the measured energy. The nor-
malization factor 4 % prevents the contribution
of high frequency modes from dominating those
of the low modes. In theory, the number of re-
maining transducers is equal to the size of the
target modal set. However, the apparent rank
is often increased due to noise in the experi-
mental data, and more than M transducers are

required to identify N independent modes.

3. A Numerical Simulation of the Asym-
metrical Long Span Bridge

In order to prove the concepts developed in
this research it was necessary to perform expe-
riments on an actual structure. A model of a
simply supported long span bridge was built to-
wards this end. In real life, long bridges are
characterized by very low closely spaced reso-
nance frequencies™'®. This is primarily due to
large span over width ratios and structural re-
dundancies which in turn introduce non-linear-
ity in the dynamic behavior of structure. The
guiding design principle behind the model

bridge was to be able to simulate this real life
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behavior of actual bridges'®. The design proc-
ess was based on a dynamic simulation on I-
DEAS (SDRC)!'""'® where different combinati-
ons of geometrical parameters like span, width,
beam sizes and configuration, slab thickness
and boundary conditions were simulated to ob-
tain acceptable mode shapes and frequencies.
In spite of the best of efforts, it was not possible
to obtain the low closely spaced resonance fre-
quencies that typify actual complex bridges.
This was to maintain constructional simplicity.
But we felt that it was enough to prove the op-
timal transducer placement concept developed
in this research. The model structure that was
finally chosen is shown in Fig. 2. Both the FEM
results of the model showed in Fig. 3(a) and
typical FRF from experimental test showed in
Fig. 3(b) showed closely spaced mode shapes
and resonance frequencies which presents an
additional challenge, and high damping as

characteristics of large structural systems.
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Fig. 2 Description of the asymmetrical bridge
(all dimension in m)



Mode 1:11.167 Hz

Mode 6 : 71.48 Hz.

Fig. 3 (a)FE results of the bridge
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Fig. 3 (b) A typical FRF with curve fitting

4. Numerical Comparison of Optimal Tran-
sducer Configuration

To determine the relative efficiencies of the
kinetic energy technique and the EIM a bench
mark test is carried out on a model of a simula-
ted bridge above. The initial candidate set
shown in Fig. 4 consists of 87 transducer locati-
ons positioned to identify six eigenmodes and
eigenvectors. transducers are eliminated with
the EIM and the EOT until a rank deficiency is
created in the Fisher information matrix and

the Energy matrix.

39 349

3

A plot of the relative performance of EIM
and EOT as a function of the number of trans-
ducer locations deleted is shown in Fig. 5. Both
the methods start out with the same number of
transducers, and after each iteration the value
of the determinant of the Fishers -information
matrix and the energy matrix is computed.
This new value of the determinant is then com-
pared to the old value and presented in the
form of a percentage and has been plotted on
the y axis as a function of the number of itera-
tions. As seen in Fig. 5 both the methods are
very stable, but the EOT appears to have a dis-
tinct advantage as the number of removed

transducers increases.

@ Indicates Sensor Locations

Fig. 4 Initial candidate transducer set (87 tran-
sducers) positioned to identify six eig-
enmodes and eigenvectors

Determinani(®)

8

o ver—bov o Leacr ool v L
] 10 20 30 40 50 60 70 80

Heration

§ VORI Bs. YN

Fig. 5 Determinant of fisher information matrix
and kinetic energy
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5. Experimental Test Results

The above comparison was based on a nume-
rical simulation only. In order to further inves-
tigate the efficiencies of the two methods, an
experimental analysis was performed on the
long span bridge model with simply supported
B.C. The experimental setup as shown in Fig. 6
consisted of Dytran 3187B1 accelerometers and
a 32 channel Zonic 7000 data acquisition system.
The data acquisition process was controlled by
Zeta, a proprietary data acquisition software
developed by Zonic Corp. The data was obtai-
ned in the form of FRFs and stored in a unive-
rsal file format. Subsequently the data was
processed by MEscope(Vibrant Technology
Inc.) to obtain the mode shapes, frequencies

and damping ratios.

Signat P o Digital Chase : Zonic Model 7015 :
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Analog Chassis - Zonic Model 7014

Fig. 6 Data acquisition setup

Transducer locations based on the EIM and
the EOT were identified for the first six modes
for a set of 15 transducers as shown in Fig. 7
and 8 respectively. The above transducer loca-
tions were used to obtain the response of the
structure from forced excitation. A typical FRF
is shown in Fig. 3(b) with high damping. The
modal parameters from FE results are shown in
Fig. 3(a). In comparison of the modal frequen-

cies and damping ratios for the FE results, the
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EIM and the EOT are shown in Table 1. Both
the EIM and the EOT results closely agree with
each other. However there is some discrepancy
between the FE results and the experimental
results. This has been attributed to inaccurate

modeling of the support rigidity.

Fig. 7 Optimal sensor locations for the first 6
modes based on EIM

Fig. 8 Optimal sensor locations for the first 6
modes based on EOT

Frequency comparison is only one of the
ways of comparing the EIM and the EOT resu-
lts. A more objective way of comparing the re-
sults is comparing the actual mode shapes
which can be identified by each of these meth-
ods. A tool called the modal assurance criteria
(MAC) is an effective way of comparing two
sets of structural dynamic data and devising a
correlation measure. Popular measures of the

correlation are the frequency relative errors



Table 1 Comparison of modal frequencies b-
tween EIM and EOT

Frequency(Hz)

Analytical EIM Exp. Test | EOT Exp. Test

" Freq. l Freq. ‘Damping| Freq. ' Damping
. (Hz) | (Hz) (%) | (Hz) (%)

1 11167 ’ 8251 | 0.009 | 8.265 0.009
2 2114 | 2204700236 | 2211  0.038
3 | 2866 285340149 ' 2858 & 0.146

4 | 5176 50497 | 1482 50.814 | 1481

o _
6

57.3¢ 55334 | 3.002 55.084 | 1.855

7148 67535 | 0412  66.768 | 0.529

and MAC, which is sometimes referred to as
the modal correlation coefficient and is defined

as

2

S, @)

MACG, j) = (S, ) (B, )

10)

where a means analytical data and e means ex-
perimental data. MAC is calculated to quantify
the correlation between measured mode shapes
during the different tests and to check the
orthogonality of measured mode shapes during
a particular test. MAC uses the orthogonality
properties of the mode shapes to compare either
two modes from the same test or two modes
from different tests. If the modes are identical,
a scalar value of one model is calculated using
MAC. If the modes are orthogonal, a value of
zero is calculated. Ewins'” opints out that cor-
related modes will yield a value greater then 0.9
and uncorrelated modes will yield a value less
then 0.006 MAC is not affected by a scalar
multiple.

Comparison of the MAC data is shown in Ta-
bles 2 and 3, and Fig. 9 and 10. The MAC resu-

2%

icd

845

Its for the EIM show a very high correlation be:
tween the first four modes with the correlation
dropping off for the 5th and 6th modes. In com-
parison, the EOT shows a very high correlation
between the first 4 modes, with the correlation
dropping off for the 5th and 6th mode also.
However, the correlation coefficients for the
5th and 6th modes of the EOT is much higher
than the 5th and 6th modes of the EIM. The
EOT technique however appears to be picking
up off diagonal terms. Based on the results ob-
tained from both the numerical simulation and
the experimental data it can be inferred that
the EOT has some distinct advantages over the

EIM.

Table 2 Comparison of mode shape(MAC) for
EIM

Mode 1 | 2 | 3 4 5 6
1 0.090 | 0.002 | 0.003 | 0.009 ' 0.002 | 0.008

2 0001 0.993 0.005 | 0.004 | 0.070 | 0.171

3 0005|0011 0992|0000 0.006 | 0.030 |

4| 0.008 0.002 | 0.000 0984 0.417 6:615}

5

6

0.042 0.002 | 0.005 0.046 , 0.334 | 0.225
0.005 0179 | 0.012 0.005 0.09 0.582

MAC

Fig. 9 Comparison of mode shape(MAC) for EIM
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Table 3 Comparison of mode shape(MAC) for
EOT

Mode| 1 | 2 | 3 | 4 | 5 | 6 |
1 | 0988 00130007 0.002]0.002 0011
2 10019 0.990 | 0.004 | 0.002 | 0.113  0.621
3 0.007 | 0.001  0.971 | 0.041 0.078 | 0.056 |
4 0007 ] 0.010 0.054 | 0.961 0.3 |0.043
. :
6

0.007 0.008 0.001 | 0.007 0.561 0.027
0.000 | 0404 0.008 | 0.002 0.121 | 0.788

Fig. 10 Comparison of mode shape (MAC) for
EOT

6. Conclusions

In this research, the Energy Optimization
Technique is proposed to place transducers ef-
fectively and econmically in large structural
system, and is compared to EIM. We numerical-
ly and experimentally show that the EOT with
fewer transducers has more advantages in
picking up the mode shapes in several ways.
Both numerical simulation and experimental
data prove that with the same number of
transducer locations the EOT identifies the
mode shapes better than the EIM. As the num-
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ber of transducers ae reduced and the mode
number increases, the difference between the
two techniques become quite apparent. We
therefore conclude that the EOT algorithm 1s
preferable when a structure is to be instrume-

nted with fewer sensors for monitoring purpose.
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