• Title/Summary/Keyword: Kinetic constants

Search Result 411, Processing Time 0.029 seconds

Phytoremediation of the pesticides, endosulfan (${\alpha}$ and ${\beta}$) and fenitrothion, using aquatic plants (수생식물을 이용한 엔도설판(${\alpha},\;{\beta}$) 및 페니트로치온의 제거)

  • Kim, Jong-Hyang;Lee, Bang-Hee;Hur, Jong-Sou;Lee, Geun-Seon;Koh, Sung-Cheol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.249-256
    • /
    • 2010
  • A phytoremediation study has been conducted to see if some known aquatic plants can remove the pesticides, endosulfan-${\alpha},\;{\beta}$ and fenitrothion which are frequently used in the crop protection and golf course management, and are likely to exist as residual pollutants in the aquatic ecosystems. Among the five aquatic plants tested in the microcosms, water lily Nymphaea tetragona Georgi showed the highest degradation efficacies (85~95%) for the three pesticides as opposed to the control(13~26%). The efficacies for the other plants were in the range of 46~80% in the order of Pistia stratiotes, Cyperus helferi, Eichhornia crassipes, and Iris pseudoacorus. Fenitrothion, an organo-phosphorus pesticide, was much more vulnerable to the phytoremediation than the organo-chlorine pesticides, endosulfan-${\alpha}$ and endosulfan-${\beta}$. The kinetic rate constants ($min^{-1}$) for removal of the three pesticides were more than 10 times higher than the control (non-planting) in case of Nymphaea tetragona Georgi. This aquatic plant showed kinetic rate constants about 2 times as much as the lower kinetic rate constants shown by Iris pseudoacorus. The reason for the highest degradation efficacy of water lily would be that the plant can live in the sediment and possess roots and broad leaves which could absorb or accumulate and degrade more pollutants in association with microbes. These results indicate that some of the selected aquatic plants planted near the agricultural lands and wetlands could contribute to remediation of pesticides present in these places, and could be applicable to protection of the aquatic ecosystems.

Stoichiometric Solvation Effects. Part 4. Product-Rat Correlations for Solvolyses of p-Methoxyphenyl Chloroformate in Alcohol-Water Mixtures

  • 구인선;양기열;구자찰;박종근;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.1017-1021
    • /
    • 1997
  • Solvolyses of p-methoxyphenyl chloroformate in water, D2O, CH3OD, 50% D2O-CH3OD, and in aqueous binary mixtures of acetone, ethanol and methanol are investigated at 25.0 ℃. Product selectivities are reported at 25 ℃ for a wide range of ethanol-water and methanol-water solvent compositions. The Grunwald-Winstein plots of first-order rate constants for p-methoxyphenyl chloroformate with YCl (based on 1-adamantyl chloride) show marked dispersions into three separate curves for the three aqueous mixtures with a small m value and a rate maximum for aqueous alcohol solvents. Third-order rate constants, kww, kaw, kwa and kaa were calculated from the observed kww and kaa values together with kaw and kwa calculated from the intercept and slope of the plot of 1/S vs. [alcohol]/[water]. The calculated rate constants, kcalc and mol % of ester agree satisfactorily with those of the observed rate constants, kobs and mol % of ester, supporting the stoichiometric solvation effect analysis. The kinetic solvent isotope effects determined in water and methanol are consistent with the proposed mechanism of the general base catalyzed carbonyl addition-elimination.

Characteristic of Al(III) Hydrolysis Specie Distribution on Coagulation Process (응집공정에서 발생하는 알루미늄 가수분해종 분포특성)

  • Song, Yu-Kyung;Jung, Chul-Woo;Hwangbo, Bong-Hyung;Sohn, In-Shik
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.547-554
    • /
    • 2006
  • The overall objective of this research was to find out the role of rapid mixing conditions in the species of hydrolyzed Al(III) formed by Al(III) coagulants and to evaluate the distribution of hydrolyzed Al(III) species by coagulant dose and coagulation pH. When an Al(III) salt was added to water, monomeric Al(III), polymeric Al(III), precipitate Al(III) was formed by Al(III) hydrolysis. The method of hydrolyzed Al(III) species characterization analysis was based on timed spectrophotometer with ferron as a color developing reagent. The hydrolytic species were divided into monomer, polymer, precipitate from the reaction kinetics. And then, the color intensity for monomeric Al(III) was read 3 min after mixing. With standard Al solution containing monomeric Al(III) only, the Al-ferron color intensity slightly increased with until about 3 min. During the rapid mixing period, for purewater, formation of dissolved Al(III) (monomer and polymer) was similar to rapid mixing condition, but for raw water, the species of Al(III) hydrolysis showed different result. During the rapid mixing period, for high coagulant dose, Al-ferron reaction increases rapidly. The kinetic constants, Ka and Kb, derived from Al-ferron reaction. The kinetic constants followed very well the defined tendencies for coagulation condition. For pure water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values. Also, for raw water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values.

A Kinetic Study of the Chemiluminescent Reactions of Bis(2,4-dinitrophenyl)Oxalate, Hydrogen Peroxide, and Fluorescent Polycyclic Aromatic Hydrocarbons

  • Shin, Hyung-Seon;Kang, Sung-Chul;Kim, Kang-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.3
    • /
    • pp.251-254
    • /
    • 1989
  • A kinetic study on the chemiluminescence resulting from the reaction between bis(2,4-dinitrophenyl) oxalate(DNPO) and hydrogen peroxide in the presence of fluorescent polycyclic aromatic hydrocarbons in a viscous phthalate medium has been conducted. The resultant data confirm that the reaction between DNPO and $H_2O_2$ is the rate determining step. Higher rate constants are obtained with DNPO than those with bis(2,4,6-trichlorophenyl) oxalate (TCPO).

Kinetic Measurements of Irreversible Photobleaching of Bacteriorhodopsin in A High Temperature State

  • Yokoyama, Yasunori;Sonoyama, Masashi;Mitaku, Shigeki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.296-298
    • /
    • 2002
  • Irreversible photobleaching of bacteriorhodopsin (bR), namely denaturation induced by illumination of visible light, was investigated by absorption kinetic measurements. The denaturation kinetics revealed that light illumination significantly enhanced the structural decay of bR. The kinetic analyses showed that the molecular structure of bR denatures according to a single-exponential decay, whereas irreversible photobleaching has two decay components. The decay constant of the slow component of photobleaching is almost same as that in the dark. An Arrhenius plot of the denaturation kinetic constants for the fast and slow components showed similar activation energies of approximately 19 kcal/mol.

  • PDF

Review on the Determination of Frumkin, Langmuir, and Temkin Adsorption Isotherms at Electrode/Solution Interfaces Using the Phase-Shift Method and Correlation Constants

  • Chun, Jinyoung;Chun, Jang H.
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.734-745
    • /
    • 2016
  • This review article described the electrochemical Frumkin, Langmuir, and Temkin adsorption isotherms of over-potentially deposited hydrogen (OPD H) and deuterium (OPD D) for the cathodic $H_2$ and $D_2$ evolution reactions (HER, DER) at Pt, Ir, Pt-Ir alloy, Pd, Au, and Re/normal ($H_2O$) and heavy water ($D_2O$) solution interfaces. The Frumkin, Langmuir, and Temkin adsorption isotherms of intermediates (OPD H, OPD D, etc.) for sequential reactions (HER, DER, etc.) at electrode/solution interfaces are determined using the phase-shift method and correlation constants, which have been suggested and developed by Chun et al. The basic procedure of the phase-shift method, the Frumkin, Langmuir, and Temkin adsorption isotherms of OPD H and OPD D and related electrode kinetic and thermodynamic parameters, i.e., the fractional surface coverage ($0{\leq}{\theta}{\leq}1$) vs. potential (E) behavior (${\theta}$ vs. E), equilibrium constant (K), interaction parameter (g), standard Gibbs energy (${\Delta}G_{\theta}{^{\circ}}$) of adsorption, and rate (r) of change of ${\Delta}G_{\theta}{^{\circ}}$ with ${\theta}$ ($0{\leq}{\theta}{\leq}1$), at the interfaces are briefly interpreted and summarized. The phase-shift method and correlation constants are useful and effective techniques to determine the Frumkin, Langmuir, and Temkin adsorption isotherms and related electrode kinetic and thermodynamic parameters (${\theta}$ vs. E, K, g, ${\Delta}G_{\theta}{^{\circ}}$, r) at electrode/solution interfaces.

Product-Rate Correlations for Solvolyses of 2,4-Dimethoxybenzenesulfonyl Chloride

  • Kim, Soo Ryeon;Choi, Hojune;Park, Jong Keun;Koo, In Sun;Koh, Han Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.51-56
    • /
    • 2014
  • The solvolysis rate constants of 2,4-dimethoxybenzenesulfonyl chloride (1) in 30 different solvents are well correlated with the extended Grunwald-Winstein equation, using the $N_T$ solvent nucleophilicity scale and $Y_{Cl}$ solvent ionizing scale, with sensitivity values of $0.93{\pm}0.14$ and $0.65{\pm}0.06$ for l and m, respectively. These l and m values can be considered to support a $S_N2$ reaction pathway. The activation enthalpies (${\Delta}H^{\neq}$) were 12.4 to $14.6kcal{\cdot}mol^{-1}$ and the activation entropies (${\Delta}S^{\neq}$) were -15.5 to -$32.3kcal{\cdot}mol^{-1}{\cdot}K^{-1}$, which is consistent with the proposed bimolecular reaction mechanism. The solvent kinetic isotope effects (SKIE) were 1.74 to 1.86, which is also in accord with the $S_N2$ mechanism and was possibly assisted using a general-base catalysis. The values of product selectivity (S) for solvolyses of 1 in alcohol/water mixtures was 0.57 to 6.5, which is also consistent with the proposed bimolecular reaction mechanism. Third-order rate constants, $k_{ww}$ and $k_{aa}$, were calculated from the rate constants ($k_{obs}$), together with $k_{aw}$ and $k_{wa}$ calculated from the intercept and slope of the plot of 1/S vs. [water]/[alcohol]. The calculated rate constants, $k_{calc}$ ($k_{ww}$, $k_{aw}$, $k_{wa}$ and $k_{aa}$), are in satisfactory agreement with the experimental values, supporting the stoichiometric solvation effect analysis.

Study on the Hydrolysis Kinetics of Xylan on Different Acid Catalysts (다양한 산 촉매에서 자이란 가수분해 특성)

  • Na, Byeong-Il;Lee, Jae-Won
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.226-232
    • /
    • 2014
  • In this study, we investigated kinetic model for the acid-catalyzed xylan hydrolysis at temperature $120{\sim}150^{\circ}C$. Also, we analyzed the kinetic parameters for xylose production and furfural decomposition. The hydrolysis of xylan and the degradation of xylose were promoted by high reaction temperature and acid concentration. The optimal hydrolysis condition for the highest reaction rate constants ($k_1$) was different depending on the acid catalysts. Among sulfuric, oxalic and maleic acid, the xylan reaction rate constants ($k_1$) to xylose had the highest value of $0.0241min^{-1}$ when 100 mM sulfuric acid was used at $120^{\circ}C$. However, sulfuric acid induced more xylose degradation compared to oxalic and maleic acid hydrolysis. The activation energy for xylan degradation was the highest when sulfuric acid was used.

Determination of the Frumkin and Temkin Adsorption Isotherms of Hydrogen at Nickel/Acidic and Alkaline Aqueous Solution Interfaces Using the Phase-Shift Method and Correlation Constants

  • Chun, Jang-H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.1
    • /
    • pp.54-66
    • /
    • 2012
  • The phase-shift method and correlation constants, which are unique electrochemical impedance spectroscopy techniques for studying the linear relationship between the phase shift ($90^{\circ}{\geq}-{\varphi}{\geq}0^{\circ}$) vs. potential (E) behavior for the optimum intermediate frequency ($f_o$) and the fractional surface coverage ($0{\leq}{\theta}{\leq}1$) vs. E behavior, are proposed and verified to determine the Frumkin, Langmuir, and Temkin adsorption isotherms and the related electrode kinetic and thermodynamic parameters. At Ni/0.5 M $H_2SO_4$ and 0.1M LiOH aqueous solution interfaces, the Frumkin and Temkin adsorption isotherms (${\theta}$ vs. E) of H for the cathodic hydrogen ($H_2$) evolution, interaction parameters (g), equilibrium constants (K), standard Gibbs energies (${\Delta}G^0_{\theta}$) of H adsorption, and rates of change (r) of ${\Delta}G^0_{\theta}$ with ${\theta}$ have been determined using the phase-shift method and correlation constants. A lateral repulsive interaction (g>0) between the adsorbed H species appears. The value of K in the alkaline aqueous solution is much greater than that in the acidic aqueous solution.

Determination of Adsorption Isotherms of Hydrogen on Zirconium in Sulfuric Acid Solution Using the Phase-Shift Method and Correlation Constants

  • Chun, Jang-H.;Chun, Jin-Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.26-33
    • /
    • 2009
  • The phase-shift method and correlation constants, i.e., the unique electrochemical impedance spectroscopy (EIS) techniques for studying the linear relationship between the behavior ($-{\varphi}$ vs. E) of the phase shift ($90^{\circ}{\geq}-{\varphi}{\geq}0^{\circ}$) for the optimum intermediate frequency and that ($\theta$ vs. E) of the fractional surface coverage ($0{\leq}{\theta}{\leq}1$), have been proposed and verified to determine the Langmuir, Frumkin, and Temkin adsorption isotherms of H and related electrode kinetic and thermodynamic parameters at noble metal (alloy)/aqueous solution interfaces. At a Zr/0.2 M ${H_2}{SO_4}$ aqueous solution interface, the Frumkin and Temkin adsorption isotherms ($\theta$ vs. E), equilibrium constants (K = $1.401{\times}10^{-17}\exp(-3.5{\theta})mol^{-1}$ for the Frumkin and K = $1.401{\times}10^{-16}\exp(8.1{\theta})mol^{-1}$ for the Temkin adsorption isotherm), interaction parameters (g = 3.5 for the Frumkin and g = 8.1 for the Temkin adsorption isotherm), rates of change of the standard free energy (r = $8.7\;kJ\;mol^{-1}$ for g = 3.5 and r = $20\;kJ\;mol^{-1}$ for g = 8.1) of H with $\theta$, and standard free energies ($96.13{\leq}{\Delta}G^0_{\theta}{\leq}104.8\;kJ\;mol^{-1}$ for K = $1.401{\times}10^{-17}\exp(-3.5{\theta})mol^{-1}$ and $0{\leq}{\theta}{\leq}1$ and ($94.44<{\Delta}G^0_{\theta}<106.5\;kJ\;mol^{-1}$ for K = $1.401{\times}10^{-16}\exp(-8.1{\theta})mol^{-1}$ and $0.2<{\theta}<0.8$) of H are determined using the phase-shift method and correlation constants. At 0.2 < $\theta$ < 0.8, the Temkin adsorption isotherm correlating with the Frumkin adsorption isotherm, and vice versa, is readily determined using the correlation constants. The phase-shift method and correlation constants are probably the most accurate, useful, and effective ways to determine the adsorption isotherms of H and related electrode kinetic and thermodynamic parameters at highly corrosion-resistant metal/aqueous solution interfaces.