• Title/Summary/Keyword: Kinetic Simulation

Search Result 463, Processing Time 0.031 seconds

Interaction between Raindrops Splash and Sheet Flow in Interrill Erosion of Steep Hillslopes (급경사면의 세류간 침식에서 빗물튀김과 면상흐름의 상호작용)

  • Nam, Myeong Jun;Park, Sang Deog;Lee, Seung Kyu;Shin, Seung Sook
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.7
    • /
    • pp.595-604
    • /
    • 2015
  • Interrill erosion by the rainfall is divided into a detachment of soil particles by raindrop splash when raindrops having kinetic energy strike on the surface soil and a sediment transport by sheet flow of surface runoff. Rainfall kinetic energy is widely used as an indicator expressing the potential ability to separate the soil particles from soil mass. In this study, the soil erosion experiments of rainfall simulation were operated to evaluate the effects of rainfall kinetic energy on interrill erosion as using the strip cover to control raindrop impact. The kinetic energy from rainfall simulator was 0.58 times to that of natural rainfall. Surface runoff and subsurface runoff increased and decreased respectively with increase of rainfall intensity. Surface runoff discharge from plots of non-cover was 1.82 times more than that from plots with cover. The rainfall kinetic energy influenced on the starting time of surface and subsurface runoff. Soil erosion quantity greatly varied according to existence of the surface cover that can intercept rainfall energy. Sediment yields by the interaction between raindrop splash and sheet flow increased 3.6~5.9 times and the increase rates of those decreased with rainfall intensity. As a results from analysis of relationship between stream power and sediment yields, rainfall kinetic energy increased the transport capacity according to increase of surface runoff as well as the detachment of soil particles by raindrop splash.

A Study on Absorption Device of Surge Rising Pressure Occurring when Suddenly Braking Action in the Hydraulic Driving Part of Textiles Let off (섬유송출 유압구동부 급제동시 발생하는 충격상승압 흡수장치에 관한 연구)

  • 이재구;김정현;김도태;김성동;정선환
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.84-91
    • /
    • 2003
  • The equipment of textiles let off is a part of inspection machine which inspects finished textiles and it checks up textiles through that. This study suggests a method to select the capacity and initial gas pressure of accumulator to control surge rising pressure occurring when suddenly braking action to a desired degree. An accumulator in hydraulic systems is by hydraulic machinery which stores kinetic energy of inertia body during braking. A series of computer simulations were done for the brake action The results of the simulation work were compared with those of experiments.

Modeling and simulation of a batch reactor for bulk copolymerization of styrene and acrylonitirle (Styren과 acrylonitrile의 과상 공중합을 위한 회분식 반응기의 모델링 및 모사)

  • 유기윤;황우현;백종은;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.207-212
    • /
    • 1994
  • A mathematical model is developed for a batch reactor in which the free radical bulk copolymerization of styrene and acrylonitrile takes place. In this model, we introduce the free volume theory to quantify the diffusion controlled termination and propagation reactions, and develop a model for the chain length dependent termination reaction in the context of the pseudo kinetic rate constant method(PKRCM). The simulation results from this model are found to be in good agreement with experimental data under different copolymerization conditions. The present model can predict both the copolymer composition and the number and weight average molecular weights. These kinetic approaches provide greater insight into the performance of the batch reactor used for the free radical bulk copolymerization of styrene and acrylonitirle.

  • PDF

Characteristics of Kinetic Energy Transfer in Collisions Between Fragile Nanoparticle and Rigid Particle on Surface (승화성 나노 탄환입자와 표면위의 나노 고체입자의 충돌에서의 운동에너지 전달 특성)

  • Choi, Min Seok;Lee, Jin Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.595-600
    • /
    • 2014
  • The characteristics of kinetic energy transfer during a collision between a rigid target particle on a surface and a fragile bullet particle moving at a high velocity were analyzed using molecular dynamics simulation. Bullet particles made of $CO_2$ were considered and their size, temperature, and velocity were varied over a wide range. The fraction of kinetic energy transferred from the bullet particle to the target particle was almost independent of the former's size or velocity; however, it was sensitively dependent on its temperature, which can be attributed to the change in the bullet rigidity with temperature. This fraction was nearly twice as high for $CO_2$ bullets as for Ar bullets. This result explains the reason for the more superior cleaning performance of $CO_2$ bullets than Ar bullets with regard to contaminants in the 10 nm size range.

A Study on the Laminar Burning Velocity and Flame Structure with H2 Content in a Wide Range of Equivalence Ratio of Syngas(H2/CO)/Air Premixed Flames (넓은 당량비 구간에서 수소함유량에 따른 합성가스(H2/CO)/공기 예혼합화염의 연소속도 및 화염구조에 관한 연구)

  • Jeong, Byeong-Gyu;Lee, Kee-Man
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.1
    • /
    • pp.17-28
    • /
    • 2014
  • In this study, the laminar burning velocity of syngas fuel($H_2/CO$) and flame structure with various hydrogen contents were studied using both experimental measurements and detailed kinetic analysis. The laminar burning velocities were measured by the angle method of Bunsen flame configuration and the numerical calculations including chemical kinetic analysis were made using CHEMKIN Package with USC-Mech II. A wide range of syngas mixture compositions such as $H_2$ : CO = 10 : 90, 25 : 75, 50 : 50, 75:25 and equivalence ratios from lean condition of 0.5 to rich condition of 5.0 have been considered. The experimental results of burning velocity were in good agreement with previous other research data and numerical simulation. Also, it was shown that the experimental measurements of laminar burning velocity linearly increased with the increment of $H_2$ content although the burning velocity of hydrogen is faster than the carbon monoxide above 10 times. This phenomenon is attributed to the rapid production of hydrogen related radicals such as H radical at the early stage of combustion, which is confirmed the linear increase of radical concentrations on kinetic analysis. Particular concerns in this study are the characteristics of burning velocity and flame structure different from lean condition for rich condition. The decrease of OH radicals and double peaks are observed with $H_2$ content in rich condition once $H_2$ fraction exceeds over threshold.

Analysis of Flame Generated Turbulence for a Turbulent Premixed Flame with Zone Conditional Averaging (영역분할조건평균법을 이용한 난류예혼합화염내 난류운동에너지 생성에 관한 연구)

  • Im, Yong Hoon;Huh, Kang Yul
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.4
    • /
    • pp.15-23
    • /
    • 2003
  • The zone conditional two-fluid equations are derived and validated against DNS database of a premixed turbulent flame. The conditional statistics of major flow variables are investigated to understand the mechanism of flame generated turbulence. The flow field in burned zone shows substantially increased turbulent kinetic energy, which is highly anisotropic due to reaction kinematics across thin f1amelets. The transverse component may be larger than the axial component for a distributed pdf of the flamelet orientation angle, while the opposite occurs due to redistribution of turbulent kinetic energy and flamelet orientation normal to the flow at the end of a flame brush. The major source or sink terms of turbulent kinetic energy are the interfacial transfer by the mean reaction rate and the work terms by fluctuating pressure and velocity on a flame surface. Ad hoc modeling of some interfacial terms may be required for further application of the two-fluid model in turbulent combustion simulations.

  • PDF

Kinetic Monte Carlo Simulations for Defects Diffusion in Ion-implanted Crystalline

  • Jihyun Seo;Hwang, Ok-Chi;Ohseob Kwon;Kim, Kidong;Taeyoung Won
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.731-734
    • /
    • 2003
  • An atomistic process modeling, Kinetic Monte Carlo simulation, has the advantage of being both conceptually simple and extremely powerful. Instead of diffusion equations, it is based on the definitions of the interactions between individual atoms and defects. Those interactions can be derived either directly from molecular dynamics, first principles calculations, or from experiment. In this paper, as a simple illustration of the kinetic Monte Carlo we simulate defects (self-interstitials and vacancies) diffusion after ion implantation in Si crystalline.

  • PDF

Treatment of nitrobenzene-cotaminated Wastewater using Oxidation Reaction (산화제를 이용한 니트로벤젠 함유 폐수 처리)

  • 신진환;손종렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.1
    • /
    • pp.69-74
    • /
    • 2002
  • This study explored for treatment processes by investigating the treatment efficiency and reaction mechanism through oxidation reaction using UV and $O_3$ as oxidant in compensate the wastewater containing nitrobenzene that is non biodegradable organic. Also by modeling these reactions, we try to step explanation of optimum reaction rate and reaction mechanism as the development of the computer program predictable the reaction rate by modeling the reaction. By using this model, after kinetic constant for each reaction from an experimental data is made an optimization and for hardly contribute to reaction rate in reaction kinetic equation is made an ignorance and suppose the simplified reaction mechanism, examined the propriety of computer simulation model and simplified reaction mechanism by comparing and inspecting the reaction kinetic constant and masstransfer coefficient. An investigation results for destructional treatment of nitrobenzene in the wastewater as non-biddegradable organic using UV, $O_3{\;}O_2{\;}H_2O_2-UV$ as oxidant.