• Title/Summary/Keyword: Kinetic Property

Search Result 85, Processing Time 0.025 seconds

Evaluation of Planar Failure Probability for Rock Slope Based on Random Properties of Discontinuities (불연속면의 확률특성을 고려한 암반사면의 평면파괴확률 산정)

  • 배규진;박혁진
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.97-105
    • /
    • 2002
  • Random properties of discontinuities were attributed to the limitation of test methods and lack of obtained data. Therefore, the uncertainties are pervasive and inevitable in rock slope engineering as well as other geotechnical engineering fields. The probabilistic analysis has been proposed to deal properly with the uncertainty. However, previous probabilistic approaches do not take account of the condition of kinematic instability but consider only kinetic instability. In this study, in order to overcome the limitation of the previous studies, the geometric characteristics as well as the shear strength characteristics in discontinuities are taken account into the probabilistic analysis. Then, the new approach to evaluate the probability of failure is suggested. The results of the deterministic analysis which was carried out to compare with the result of the probabilistic analysis, are somewhat different from those of the probabilistic approach. This is because the selected and used data in the deterministic approach do not take account of the random properties of discontinuities.

Kinetic Property and Phylogenie Relationship of 2-Hydroxy-muconic Semialdehyde Dehydrogenase Encoded in tomC Gene of Burkholderia cepacia G4

  • Reddy, Alavala-Matta;Min, Kyung-Rak;Lee, Kyoung;Lim, Jai-Yun;Kim, Chi-Kyung;Kim, Young-Soo
    • Archives of Pharmacal Research
    • /
    • v.27 no.5
    • /
    • pp.570-575
    • /
    • 2004
  • 2-Hydroxymuconic semialdehyde (2-HMS) dehydrogenase catalyzes the conversion of 2-HMS to 4-oxalocrotonate, which is a step in the meta cleavage pathway of aromatic hydrocarbons in bacteria. A tomC gene that encodes 2-HMS dehydrogenase of Burkholderia cepacia G4, a soil bacterium that can grow on toluene, cresol, phenol, or benzene, was overexpressed into E. coli HB 101, and its gene product was characterized in this study. 2-HMS dehydrogenase from B. cepacia G4 has a high catalytic efficiency in terms of V$_{max}$K$_{max}$ towards 2-hydroxy-5-methyl-muconic semialdehyde followed by 2-HMS but has a very low efficiency for 5-chloro-2-hydroxymuconic semialdehyde. However, the enzyme did not utilize 2-hydroxy-6-oxo-hepta 2,4-dienoic acid and 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid as substrates. The molecular weight of 2-HMS dehydrogenase from B. cepacia G4 was predicted to be 52 kDa containing 485 amino acid residues from the nucleotide sequence of the tomC gene, and it exhibited the highest identity of 78% with the amino acid sequence of 2-HMS dehydrogenase that is encoded in the aphC gene of Comamonas testosteroni TA441. 2-HMS dehydrogenase from B. cepacia G4 showed a significant phylogenetic relationship not only with other 2-HMS dehydrogenases, but also with different dehydrogenases from evolutionarily distant organisms.sms.

Rockfall Behavior with Catchment Area Condition (포집공간 조건에 따른 낙석의 거동)

  • Lee, Jundae;Kwon, Youngcheul;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.1
    • /
    • pp.35-42
    • /
    • 2019
  • Various development works inevitably increase cutting slopes due to land use, and many of trails managed by different authorities are being deteriorated by long-term weathering. Collapse of slopes causes unavoidable damage of property and loss of lives because of its uncertainty and difficulty in predicting its occurrence. In order to overcome the unavoidability, America, Japan, and several European nations analyze the kinetic energy and moving distance when rocks of upper slope move along the inclined plane, via field tests and computerized interpretation of the test results. Also, they are making efforts to develop measures with which the kinetic energy of the rocks moving along the slope is absorbed and fails to reach to specific structures. However, domestic researches just focus on fragmentary prediction of rockfall using existing programs, and there have been few approaches to identify interpretation methods appropriate for domestic cases or determination of parameters. In this context, we in this study defined rockfall types and affecting factors and analyzed effects of parameters using a general-purpose rockfall simulation program to understand principles of rockfall and to estimate effects of various parameters.

A Kinetic Studies of the Pyrolysis of Waste Plastic Based on the Thermogravimetic Analyses (폐플라스틱의 열분해 시 열중량 분석 및 동역학 연구)

  • Jung, Won Hak;Hwang, Hyeon Uk;Kim, Myung Gyun;Sun, JianFeng;Mutua, Nzioka Antony;Kim, Young Ju
    • Resources Recycling
    • /
    • v.24 no.5
    • /
    • pp.15-21
    • /
    • 2015
  • Waste plastic differs in its speed of combustion owing to its variety in composition as well as kinds of plastic. This study is aimed at examining the thermal weight analysis and determination of its kinetics in order to derive the design element in pyrolysis of RPF (Refused Plastic Fuel) as the plastic solid fuel. Based on the result of TGA (Thermogravimetric analysis), kinetic characteristics were analyzed by using Kissinger method which are the most common method for obtaining activation energy, and experimental conditions of TGA were set as follows: in a nitrogen atmosphere, gas flow rate of 20 ml/min, heating rate of $5{\sim}50^{\circ}C/min$, and maximum hottest temperature of $800^{\circ}C$. The method used for determining the property of waste plastic when thermally decomposed was thought feasible as the basic data in deciding the performance, design, and optimal operating condition of the reactor in the actual reactor.

Study On Effect of Fe Density on Electrolyte Exfoliation of Chromium Plating Layer (전해액의 Fe 농도에 의한 크롬도금 탈락 연구)

  • Park, Jin-Saeng
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1297-1303
    • /
    • 2015
  • The internal chromium plating of a long-axis tube is widely used in military and industrial application, with the thick hard plating formed using a mixed solution of Chromium acid and catalytic $H_2SO_4$. A large-caliber gun can endure a high explosive force as a result of the increased stiffness and wear resistance provided by this internal hard chromium surface. The internal chromium layer of a tube is prone to exfoliation caused by the high kinetic energy of the projectile and high pressure of the explosion. Therefore, we reviewed the plating process. Chromium plating comprises many steps, including the removal of Grease, water cleaning, electrolytic abrasion, etching, plating, water cleaning, and hydrogen brittleness removal. The exfoliated chromium plating layer is affected by the adhesion property of the plating. In particular, the Fe concentration of the electrolyte affects the adhesion property. The optimum Fe concentration for effectively suppressing the exfoliation of the plating layer was established by using a scanning electron microscope to determine the surface roughness, and the effectiveness was proved in an adhesion test, etc.

Study on the Improvement of the Electrochemical Characteristics of Surface-modified V-Ti-Cr alloy by Ball-milling

  • Kim, Jin-Ho;Lee, Sang-Min;Lee, Ho;Lee, Paul S.;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.1
    • /
    • pp.39-50
    • /
    • 2001
  • Vanadium based solid solution alloys have been studied as a potential negative electrode of Ni/MH battery due to their high hydrogen storage capacity. In order to improve the kinetic property of V-Ti alloy in KOH electrolyte, the ball-milling process with Ni, which has a catalytic effect of hydrogen absorption/desorption, was carried out to modify the surface properties of V-Ti-Cr alloys with high hydrogen storage capacity. Moreover, to overcome the problem of poor cycle life, V-Ti alloy substituted by Cr, V0.68 Ti0.20 Cr0.12, has been developed showing a good cycle performance (keeping about 80 % of initial discharge capacity after 200 cycles). The cycle life of surface-modified V0.68 Ti0.20 Cr0.12 alloy was improved by suppressing the formation of TiO2 layer on the alloy surface while decreasing the amount of dissolved vanadium in the KOH electrolyte. In order to promote the effect of Ni coating on the surface property of V0.68 Ti 0.20 Cr 0.12 alloy by ball-milling, filamentary-typed Ni, which has higher surface coverage area than sphere-typed Ni was used as a surface modifier. Consequently, the surface-modified V0.68 Ti0.20 Cr0.12 alloy electrode showed a improved discharge capacity of 460 mAh/g.

  • PDF

Critical earthquake input energy to connected building structures using impulse input

  • Fukumoto, Yoshiyuki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1133-1152
    • /
    • 2015
  • A frequency-domain method is developed for evaluating the earthquake input energy to two building structures connected by viscous dampers. It is shown that the earthquake input energies to respective building structures and viscous connecting dampers can be defined as works done by the boundary forces between the subsystems on their corresponding displacements. It is demonstrated that the proposed energy transfer function is very useful for clear understanding of dependence of energy consumption ratios in respective buildings and connecting viscous dampers on their properties. It can be shown that the area of the energy transfer function for the total system is constant regardless of natural period and damping ratio because the constant Fourier amplitude of the input acceleration, relating directly the area of the energy transfer function to the input energy, indicates the Dirac delta function and only an initial velocity (kinetic energy) is given in this case. Owing to the constant area property of the energy transfer functions, the total input energy to the overall system including both buildings and connecting viscous dampers is approximately constant regardless of the quantity of connecting viscous dampers. This property leads to an advantageous feature that, if the energy consumption in the connecting viscous dampers increases, the input energies to the buildings can be reduced drastically. For the worst case analysis, critical excitation problems with respect to the impulse interval for double impulse (simplification of pulse-type impulsive ground motion) and multiple impulses (simplification of long-duration ground motion) are considered and their solutions are provided.

Preparation and Properties of Modified Silicon-containing Arylacetylene Resin with Bispropargyl Ether

  • Zhang, Jian;Huang, Jianxiang;Yu, Xiaojiao;Wang, Canfeng;Huang, Farong;Du, Lei
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3706-3710
    • /
    • 2012
  • A novel silicon-containing arylacetylene resin (MSAR) modified by dipropargyl ether of bisphenol A (DPBPA) and dipropargyl ether of perfluorobisphenol A (DPPFBPA) was prepared separately. The curing behaviors of modified resins, DPBPA/MSAR and DPPFBPA/MSAR, were characterized with differential scanning calorimeter (DSC). The kinetic parameters of modified resins were obtained by the Kissinger and Ozawa methods. The results of dynamic mechanical analysis (DMA) revealed that the glass transition temperature ($T_g$) of the cured DPBPA/MSAR reached $486^{\circ}C$. According to the thermogravimetric analysis (TGA), the decomposition temperature ($T_{d5}$) of the cured resins and char yield ($Y_c$, $800^{\circ}C$) decreased as the dipropargyl ether loadings increased, especially in air. With the same weight loading, thermal stability of DPBPA/MSAR was better than that of DPPFBPA/MSAR. The carbon fiber (T300) reinforced composites exhibited excellent flexural properties at room temperature with a high property retention at $300^{\circ}C$.

Preparation of Zeolite Coated with Metal-Ferrite and Adsorption Characteristics of Cu(II) (금속 페라이트가 코팅된 제올라이트의 제조와 Cu(II)의 흡착 특성)

  • Baek, Sae-Yane;Nguyen, Van-Hiep;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.54-61
    • /
    • 2019
  • In this study, a magnetic adsorbent was synthesized by growing ferrite nanoparticles substituted with metals (Me = Co, Mn, Ni) on zeolite 4A for the efficient separation of waste adsorbents present in the solution after the adsorption of Cu(II). The metal ferrite grown on the surface of zeolite was prepared by solvothermal synthesis. Characteristics of the magnetic adsorbent were analyzed by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and physical property measurement system (PPMS). The saturation magnetization of the A type zeolite coated with Co-ferrite (CFZC) was the highest at 5 emu/g and the Cu(II) adsorption performance was also excellent. The adsorption results of Cu(II) on CFZC were well fitted by the Langmuir model at 298 K. Also, the adsorption of Cu(II) on CFZC follows a pseudo-second order kinetic. The Gibbs free energy values (${\Delta}G^0$) ranging from -4.63 to -5.21 kJ/mol indicates that the Cu(II) adsorption is spontaneous in the temeprature range between 298 and 313 K.

Theoretical Study on the Reaction Mechanism of Azacyclopropenylidene with Epoxypropane: An Insertion Process

  • Tan, Xiaojun;Wang, Weihua;Li, Ping
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2717-2722
    • /
    • 2014
  • The reaction mechanism between azacyclopropenylidene and epoxypropane has been systematically investigated employing the second-order M${\o}$ller-Plesset perturbation theory (MP2) method to better understand the reactivity of azacyclopropenylidene with four-membered ring compound epoxypropane. Geometry optimization, vibrational analysis, and energy property for the involved stationary points on the potential energy surface have been calculated. It was found that for the first step of this reaction, azacyclopropenylidene can insert into epoxypropane at its C-O or C-C bond to form spiro intermediate IM. It is easier for the azacyclopropenylidene to insert into the C-O bond than the C-C bond. Through the ring-opened step at the C-C bond of azacyclopropenylidene fragment, IM can transfer to product P1, which is named as pathway (1). On the other hand, through the H-transferred step and subsequent ring-opened step at the C-N bond of azacyclopropenylidene fragment, IM can convert to product P2, which is named as pathway (2). From the thermodynamics viewpoint, the P2 characterized by an allene is the dominating product. From the kinetic viewpoint, the pathway (1) of formation to P1 is primary.