Kinetic Property and Phylogenie Relationship of 2-Hydroxy-muconic Semialdehyde Dehydrogenase Encoded in tomC Gene of Burkholderia cepacia G4

  • Reddy, Alavala-Matta (College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University) ;
  • Min, Kyung-Rak (College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University) ;
  • Lee, Kyoung (College of Natural Science, Changwon National University) ;
  • Lim, Jai-Yun (College of Natural Sciences, Chungbuk National University) ;
  • Kim, Chi-Kyung (College of Natural Sciences, Chungbuk National University) ;
  • Kim, Young-Soo (College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University)
  • Published : 2004.05.01

Abstract

2-Hydroxymuconic semialdehyde (2-HMS) dehydrogenase catalyzes the conversion of 2-HMS to 4-oxalocrotonate, which is a step in the meta cleavage pathway of aromatic hydrocarbons in bacteria. A tomC gene that encodes 2-HMS dehydrogenase of Burkholderia cepacia G4, a soil bacterium that can grow on toluene, cresol, phenol, or benzene, was overexpressed into E. coli HB 101, and its gene product was characterized in this study. 2-HMS dehydrogenase from B. cepacia G4 has a high catalytic efficiency in terms of V$_{max}$K$_{max}$ towards 2-hydroxy-5-methyl-muconic semialdehyde followed by 2-HMS but has a very low efficiency for 5-chloro-2-hydroxymuconic semialdehyde. However, the enzyme did not utilize 2-hydroxy-6-oxo-hepta 2,4-dienoic acid and 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid as substrates. The molecular weight of 2-HMS dehydrogenase from B. cepacia G4 was predicted to be 52 kDa containing 485 amino acid residues from the nucleotide sequence of the tomC gene, and it exhibited the highest identity of 78% with the amino acid sequence of 2-HMS dehydrogenase that is encoded in the aphC gene of Comamonas testosteroni TA441. 2-HMS dehydrogenase from B. cepacia G4 showed a significant phylogenetic relationship not only with other 2-HMS dehydrogenases, but also with different dehydrogenases from evolutionarily distant organisms.sms.

Keywords

References

  1. Arai, H., Ohishi, T., Chang , M. Y., and Kudo, T., Arrangement and regulation of the genes for meta-pathway enzymes required for degradation of phenol in Comamonas testosteroni TA441. Microbiology, 146, 1707-1715 (2000)
  2. Folson, B. R. and Chapman, P. J., Performance characterization of a model bioreactor for the biodegradation of trichloroethylene by Pseudomonas cepacia G4. Appl. Environ. Microbiol., 57, 1602-1608 (1991)
  3. Gibson, D. T., Hensely, M., Yoshioka, H., and Mabry, T. J., Formation of (+)-cis-dihydroxy-1-methylcyclohexa-4,6-diene form toluene by Pseudomonas putida. Biochemistry, 9, 1626-1630 (1970) https://doi.org/10.1021/bi00809a023
  4. Harayama, S., Lehrbach, P. R., and Timmis, K. N., Transposon mutagenesis analysis of meta-cleavage pathway operon genes of the TOL plasmid of Pseudomonas putida mt-2. J. Bacteriol., 160, 251-255 (1984)
  5. Hayase, N., Taira, K., and Furukawa, K., Pseudomonas putida KF715 bphABCD operon encoding biphenyl and polychlorinated biphenyl degradation: cloning, analysis and expression in soil bacteria. J. Bacteriol., 172, 1160-1164 (1990)
  6. He, Z., Davis, J. K., and Spain, J. C., Purification, characterization, and sequence analysis of 2-aminomuconic 6-semialdehyde dehydrogenase from Pseudomonas pseudoalcaligenes JS45. J. Bacteriol., 180, 4591-4595 (1998)
  7. Inoue, J., Shaw, J. P., Rekik, M., and Harayama, S., Overlapping substrate specificities of benzaldehyde dehydrogenase (the xylC gene product) and 2-hydroxymuconic semialdehyde dehydrogenase (the xylG gene product) encloded by TOL plasmid pWWO of Pseudomonas putida. J. Bacteriol., 177, 1196-1201 (1995)
  8. Kang, E., Oh, J. M., lee, J., Kim, Y. C., Min, K. H., Min, K. R., and Kim, Y., Genetic structure of the bphG gene encoding 2-hydroxymuconic semialdehyde dehydrogenase of Achromobacter xylosoxidans KF701. Biochem. Biophys. Res. Commun., 246, 20-25 (1998) https://doi.org/10.1006/bbrc.1998.8556
  9. Kim, S., Shin, H. J., Kim, Y., Kim, S. J., and Kim, Y. C., Nucleotide sequence of the Pseudomonas sp. DJ77 phnG gene encoding 2-hydroxymuconic semialdehyde dehydrogenase. Biochem. Biophys. Res. Commun., 240, 41-45 (1997) https://doi.org/10.1006/bbrc.1997.7595
  10. Kukor, J. J. and Olsen, R. H., Genetic organization and regulation of a meta cleavage pathway for catechols produced from catabolism of toluene, benzene, phenol, and cresols by Pseudomonas pikettii PKO1. J. Bacteriol., 173, 4587-4594 (1991)
  11. Nelson, M. J. K., Montgomery, S. O., ONeil, E. J., and Pritchard, P. H., Aerobic metabolism of trichloroethylene by a bacterial isolate. Appl. Environ. Microbiol., 52, 383-384 (1986)
  12. Oh, J. M., Kang, E., Min, K. R., Kim, C. K., Kim, Y. C., Lim, J. Y., Lee, K. S., Min, K. H., and Kim, Y., Structure of catechol 2,3-dioxygenase gene encoded in TOM plasmid of Pseudomonas cepacia G4. Biochem. Biophys. Res. Commun., 234, 578-581 (1997) https://doi.org/10.1006/bbrc.1997.6680
  13. Shields, M. S., Reagin, M. J., Gerger, R. R., Campbell, R., and Somerville, C., TOM, a new aromatic degradative plasmid from Burkholderia (Pseudomonas) cepacia G4. Appl. Environ. Microbiol., 61, 1352-1356 (1995)
  14. Shingler, V., Powlowski, J., and Marklund, U., Nucleotide sequence and functional analysis of the complete phenol/ 3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J. Bacteriol., 174, 711-724 (1992)
  15. Whited, G. M. and Gibson, D. T., Toluene-4-monoxygenase, a three component enzyme system that catalyzes the oxidation of toluene to ${\rho}$-cresol in Pseudomonas mendocina KR1. J. Bacteriol., 173, 3010-3016 (1991)
  16. Worsey, M. J. and Williams, P. A., Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. J. Bacteriol., 124, 7-13 (1975)