• Title/Summary/Keyword: Kinetic Friction Coefficient

Search Result 53, Processing Time 0.029 seconds

Flow characteristics of high pressurized jet with aspect ratio (형상비에 따른 고압 분사 노즐의 유동 특성 연구)

  • Roh, Byung-Joon;Jeung, Woo-Tae;Lee, Sang-Jin;Kim, Sung-Min
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.717-722
    • /
    • 2003
  • The aspect ratio is the main parameter which governs the outer flow pattern and nozzle performance. And in this study, some flow characteristics with the variation of nozzle aspect ratios such as mean pressure distributions along the center line of the outer flow, flow coefficients and the diffusion angles have been experimentally investigated. Through the experimental analysis, the higher aspect ratio was known to decrease the jet kinetic energy because of the friction losses at the outer of nozzle. As the result, it is found that the nozzle performance depends mainly on the aspect ratio of nozzle.

  • PDF

Characterization of tribologic DLC thin films fabricated by pulsed laser deposition (펄스 레이저 증착법에 의한 DLC 박막의 내마모성 특성변화)

  • Shim, Kyung-Suk;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.851-853
    • /
    • 1999
  • DLC thin films have been fabricated by pulsed laser deposition with various deposition parameters. The characterization of fabricated thin films was performed depending on the deposition parameters. As the kinetic energies provided by deposition temperature and the laser energy density were increased, the film showed graphite properties. Structural properties of the films were investigated by Raman spectroscopy. The growth energy should be optimized to fabricate high quality DLC thin films. DLC films showed high hardness and their friction coefficient was measured to be about 0.2 regardless of the load of the ball pin.

  • PDF

Experimental Methodology Development for SFR Subchannel Analysis Code Validation with 37-Rods Bundle (소듐냉각고속로 부수로 해석코드 검증을 위한 37봉다발 실험방법 개념 개발)

  • Euh, Dong-Jin;Chang, Seok-Kyu;Bae, Hwang;Kim, Seok;Kim, Hyung-Mo;Choi, Hae-Seob;Choi, Sun-Rock;Lee, Hyung-Yeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.89-94
    • /
    • 2014
  • The 4th generation SFR is being designed with a milestone of construction by 2028. It is important to understand the subchannel flow characteristics in fuel assembly through the experimental investigations and to estimate the calculation uncertainties for insuring the confidence of the design code calculation results. The friction coefficient and the mixing coefficient are selected as primary parameters. The two parameters are related to the flow distribution and diffusion. To identify the flow distribution, an iso-kinetic method was developed based on the previous study. For the mixing parameters, a wire mesh system and a laser induced fluorescence methods were developed in parallel. The measuring systems were adopted on 37 rod bundle test geometry, which was developed based on the Euler number scaling. A scaling method for a design of experimental facility and the experimental identification techniques for the flow distribution and mixing parameters were developed based on the measurement requirement.

Influence of a Large-Eddy Breakup Device on Drag of an Underwater Vehicle (Large-Eddy Breakup Device가 수중운동체의 저항에 미치는 영향)

  • Kim, Joon-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.773-783
    • /
    • 2019
  • A numerical analysis of a turbulent flow with a 'large-eddy breakup device(LEBU)' was performed to investigate the influence of the device on the drag of underwater vehicle using commercial CFD code, FLUENT. In the present study, the vehicle drag was decomposed to skin-friction coefficient(Cf) and pressure coefficient(Cp). The variation of the vehicle Cf and Cp were observed with changing location of the device and Reynolds number. As a result, the device decreased the vehicle Cf because it suppressed the turbulent characteristics behind the device. The larger Reynolds number, the higher reduction effect when the device was placed in front part of, and near the vehicle. On the other hand, the device increased/decreased the vehicle Cp with increasing/decreasing turbulent kinetic energy at recirculating flow region behind the vehicle. The total drag change by the device was caused by Cp rather than Cf.

Study on Isothermal Crystallization Behavior and Surface Properties of Non-Oriented PLA Film with Annealing Temperature (어닐링 온도에 따른 무배향 PLA 필름의 등온결정화 거동과 표면물성에 관한 연구)

  • Kim, Jihye;Kim, Moon-Sun;Kim, Byung-Woo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.611-616
    • /
    • 2011
  • In the study, annealing temperature was optimized by comparing with avrami crystallization rate and constant (k) using non-oriented PLA film as a base film. Crystallization rate constant of PLA film was 1.64, 1.68, and 1.26 at $120^{\circ}C$, $130^{\circ}C$, and $140^{\circ}C$, respectively. Annealing temperature was mainly affected on the surface properties such as rougnness (Ra) and kinetic friction coefficient (${\mu}_k$). Roughness of PLA film was 0.006 ${\mu}m$ at $80^{\circ}C$ and increased to 0.009 ${\mu}m$ 0.015 ${\mu}m$, 0.027 ${\mu}m$, and 0.029 ${\mu}m$ at $110^{\circ}C$, $120^{\circ}C$, $130^{\circ}C$ and $140^{\circ}C$, respectively. Kinetic friction coefficient decreased 0.45 to 0.43, 0.33, 0.31, 0.27 as annealing temperature was at $80^{\circ}C$, $110^{\circ}C$, $120^{\circ}C$, $130^{\circ}C$, and $140^{\circ}C$, respectivly. In addition, rate constant (k) was 0.58, 0.46, and 0.39 with adding 1 wt%, 3 wt%, and 5 wt% talc, respectively.

Preparation and Properties of EPDM/Thermoplastic Polyurethane Scrap Blends (EPDM/열가소성 폴리우레탄 스크랩 블렌드의 제조 및 물성)

  • Lee, Young-Hee;Kang, Bo-Kyung;Yoo, Hye-Jin;Kim, Jung-Soo;Jung, Young-Jin;Lee, Dong-Jin;Kim, Han-Do
    • Clean Technology
    • /
    • v.15 no.3
    • /
    • pp.172-179
    • /
    • 2009
  • The thermoplastic polyurethane waste (TPU-S) with good tensile properties, hardness, NBS abrasion resistance, specific gravity and low wet coefficient of kinetic friction was melt-blended with ethylene propylene diene monomer rubber (EPDM) with high wet slip resistance and low mechanical properties to form EPDM/TPU-S blend films, and their composition-property relationship was investigated to find the optimum composition for shoe outsole material. The properties except the wet slip resistance increased with increasing TPU-S contents in the blend. All the properties except elongation at break, specific gravity and the wet coefficient of kinetic friction in the range of $0{\sim}65\;wt%$ of TPU-S did not attain the values predicted by the simple additive rule. The optimum weight ratio of EPDM/TPU-S for the application to the typical shoe outsole material was found to be 30/70.

Particle Morphology Behavior and Milling Efficiency by DEM Simulation during Milling Process for Composites Fabrication by Traditional Ball Mill on Various Experimental Conditions - Effect of Rotation Speed, Ball Size, and Ball Material (전동볼밀의 복합재 제조공정에서 각종 실험조건에 따른 입자형상 변화 및 DEM 시뮬레이션을 통한 밀링 효율의 고찰 - 회전속도, 매체크기, 매체재질의 영향)

  • Bor, Amgalan;Batchuulun, Ichinkhorloo;Jargalsaikhan, Battsetseg;Lee, Jehyun;Choi, Heekyu
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.191-203
    • /
    • 2018
  • This study was investigated the effect of the morphology change of copper (Cu) powders under the different rotational speed and milling time by using three kinds of grinding media with different size and materials, and performed DEM simulations of ball behavior. In order to clarify the mechanism of grinding by three - dimensional simulations of the ball behavior in a traditional ball mill, the force, kinetic energy, and medium velocity of the grinding media were calculated. In the simulation, the amount of change of the input energy was also calculated by adjusting the rotational speed, ball material, kinetic velocity, and friction coefficient in the same as the actual experimental conditions. The scanning electron microscope results show that the particle morphology changes from irregular to spherical when the ball size is small.

An Analytical Study on the Performance Analysis of a Unit-In-jector System of a Diesel Engine

  • Kim, Chul-Ho;Lee, Jong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.146-156
    • /
    • 2003
  • A numerical algorithm is developed to analyze the performance of a Unit-injector (UI) System for a diesel engine. The fundamental theory of the algorithm is based on the continuity equation of fluid dynamics. The loss factors that should be seriously regarded on the continuity equation are the compressibility effect of liquid fuel, the wall friction loss in high-pressure fuel lines of the system, the kinetic energy loss of fuel in the system, and the leakage of fuel out of the control volume. For an evaluation of the developed simulation algorithm, the calculation results are compared with the experimental outputs provided by the Technical Research Center of Doowon Precision Industry Co. (DPICO) ; the maximum pressure in the plunger chamber (P$\_$p/) and total amount of fuel injected into a cylinder per cycle (Q$\_$f/) at each operational condition. The result shows that the average error rate (%) of P$\_$p/ and Q$\_$f/ are 2.90% and 4.87%, respectively, in the specified operational conditions. Hence, it can be concluded that the analytical simulation algorithm developed in this study can be reasonably applied to the performance prediction of newly designed UI system.

The effect of target power density on physical and structural properties of amorphous carbon films prepared by CFUBM sputtering (비대칭 마그네트론 스퍼터링으로 합성된 비정질 탄소박막의 물리적, 구조적 특성에서 타겟 파워 밀도의 영향)

  • Lee, Jae-Hee;Park, Yong-Seob;Park, Jae-Wook;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.366-366
    • /
    • 2008
  • Amorphous carbon (a-C) is an interesting materials and its characteristics can be varied by tuning it $sp^3$ fractions. The $sp^3$ fraction in a-C films depends on the kinetic energy of the deposited carbon ions. In this work, a-C films was synthesized on Si(100) and glass substrates at room temperature by closed-field unbalanced magnetron (CFUBM) sputtering with the increase of graphite target power density. The structural and physical properties of films were investigated by using Raman spectroscopy, X-ray photoelectron spectrometer (XPS), nano- indentation, atomic force microscope (AFM) and contact-angle measurement. We obtained the good tribological properties, such as high hardness up to 26 GPa., friction coefficient lower than 0.1 and the smooth surface (rms roughness: 0.12 nm). The increase of the physical properties with the increase of target power density are related to the increase of nano-clusters in the carbon network. Also, these results might be due to the increase of the subplantation and resputtering by the increase of ions density in the plasma.

  • PDF

Study for Characteristic of Frictional Heat Transfer in Rotating Brake System (회전을 고려한 브레이크 디스크의 마찰열전달 연구)

  • Nam, Jiwoo;Ryou, Hong Sun;Cho, Seong Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.817-822
    • /
    • 2017
  • The braking system is one of the most important components in vehicles and machines. It must exert a reliable braking force when they are brought to a halt. Generally, frictional heat is generated by converting kinetic energy into heat energy through friction. As the kinetic energy is converted into heat energy, high temperature heat is generated which affects the mechanical behavior of the braking system. Frictional heat affects the thermal expansion and friction coefficient of the brake system. If the temperature is not controlled, the brake performance will be decreased. Therefore, it is important to predict and control the heat generation of the brake. Various numerical analysis studies have been carried out to predict the frictional heat, but they assumed the existence of boundary conditions in the numerical analysis to simulate the frictional heat, because the simulation of frictional heat is difficult and time consuming. The results were based on the assumption that the frictional heat is different from the actual temperature distribution in a rotating brake system. Therefore, the reliability of the cooling effect or thermal stress using the results of these studies is insufficient. In order to overcome these limitations and establish a simulation procedure to predict the frictional heat, this study directly simulates the frictional heat generation by using a thermal-structure coupling element. In this study, we analyzed the thermo-mechanical behavior of a brake model, in order to investigate the thermal characteristics of brake systems by using the Finite Element method (FEM). This study suggests the necessity to directly simulate the frictional heating and it is hoped that it can provide the necessary information for simulations.