• Title/Summary/Keyword: Kinetic Constants

Search Result 411, Processing Time 0.029 seconds

TREATMENT OF PHENOL CONTAINED IN WASTE WATER USING THE HETEROGENIZED FENTON SYSTEM

  • Kim, Seong-Bo
    • Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.30-35
    • /
    • 2007
  • Fenton system using homogeneous iron catalyst is very powerful in the degradation of organic compounds, but has a disadvantage to remove Fe ions from water after wastewater treatment. Thus, iron catalyst was bounded to support such as inorganic and polymer materials. The PVP supporting iron catalyst showed a good catalytic performance in degradation of phenol contained in waste water and iron catalyst supported on ${SO_4}^{2-}$ type PVP (KEX 511) showed the best catalytic performance. Also, reaction kinetic study was carried out in this system. Reaction constants on various catalysts was obtained from the pseudo first order equation. Reaction rate constants with the heterogenized $FeCl_2/PVP$ catalyst is a three-fold smaller than that of $FeCl_2$ catalyst.

Study on the prediction of performance and emission of a 4-cylinder 4-stroke cycle spark ignition engine (4기통 4사이클 스파크 점화기관의 성능 및 배기조성 예측에 관한 연구)

  • 유병철;최영돈;윤강식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.39-56
    • /
    • 1988
  • In this study, the computer program was developed to predict the engine performances and exhaust emissions of a 4-cylinder 4-stroke cycle ignition engine including intake and exhaust system. The simulation models applied to each process were as follows. For the combustion process, two zone model which requires only one empirical constant was applied, and for the gas exchange process, the method of characteristics that allows the calculations of the time variation and spatial variation of properties along the pipes was used. Constant pressure perfect mixing model was applied to take into account of the interaction at manifold branches. To predict exhaust emissions, twelve chemical species were considered to be present in combustion products. These species were calculated through equilibrium thermodynamics and kinetic theory. The empirical constants reduced to least number as possible were determined through the comparison with the experimental indicator diagram of one particular operating condition and these constants were applied to other operating conditions. The predicted performances and emissions were compared with the experimental results over the wide range of operating conditions.

  • PDF

Unexpected Rate Retardation in the Formation of Phthalic Anhydride from N-Methylphthalamic Acid in Acidic H2O-CH3CN Medium

  • Ariffin, Azhar;Khan, M. Niyaz
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.7
    • /
    • pp.1037-1043
    • /
    • 2005
  • Kinetic study on the cleavage of N-methylphthalamic acid (NMPA) in mixed acidic aqueous-acetonitrile solvent reveals the formation of both phthalic anhydride (PAn) (through O-cyclization) and N-methylphthalimide (NMPT) (through N-cyclization). The formation of NMPT varies from $\sim$20% to $\sim$3% with the increase in the content of acetonitrile from 2 to 70% v/v. Pseudo first-order rate constants for the formation of PAn are more than 4-fold larger than those for the formation of NMPT at 2% v/v $CH_3CN$ in mixed aqueous solvents. Pseudo first-order rate constants for alkaline hydrolysis of NMPT reveal a nonlinear decrease with increase in the content of $CH_3CN$ in mixed aqueous solvents.

The Stability of Piroxicam in Propylene Glycol (프로필렌글리콜에서의 피록시캄의 안정성)

  • Shin, Young-Shin;Shin, Young-Hee;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.18 no.4
    • /
    • pp.203-208
    • /
    • 1988
  • The stability and solubility of piroxicam in propylene glycol (PG), polyethylene glycol (PEC), and PG-water cosolvents have been studied by using high performance liquid chromatography. The degradation rate followed an apparent first-order kinetic and the reaction rate constants at 70, 80, and $90^{circ}C$ were determined. From these rate constants, the activation energy and the rate constant of piroxicam at $25^{circ}C$ in pure PG calculated by Arrhenius equation were 23.34 kcal/mole and $7.0\;{\times}\;10^{-4}\;day^{-1}$, respectively. Both of PG and PEG increased the solubility of the drug, but PEG was more effective.

  • PDF

Kinetic Studies on the Reduction of 1-Benzyl-3-cyanoquinolinium Cations by Sodium Borohydride and the Applicability Marcus Theory

  • Han, In-Sook;Lee, Chang-Kiu;Han, In-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.79-83
    • /
    • 1987
  • The reduction of a series of 1-substituted benzyl-3-cyanoquinolinium ions (p-$cH_3$, H, p-Br, m-F, p-CN) by sodium borohydride has been investigated. In all cases the products from these reactions were found to be 1, 2-dihydroquinolines over 82% yields. Rates of reduction were measured in basic condition and in solvent system consisting of 4 parts of isopropyl alcohol and 1 part of water by volume. Second order rate constants were obtained for these reactions. When the ratio of [$OH^-$] to [$BH_4^-$] becomes large the observed rate constants ($K_{obs}$) decrease by a small factor. Reaction scheme and rate law are discussed. Bronsted ${\alpha}(=\frac{d\;In\;k}{d\;In\;K})$ obtained by using the value of equilibrium constant K, which was obtained previously, was not 0. Instead, a value of 0.36 was obtained which indicated that the reduction by borohydride was structure-dependent according to the Marcus formalism even though the reaction rate was close to the diffusion limit.

Large Acceleration Effects of Mono-6-(alkylamino)-$\beta$-cyclodextrins on the Cleavage of p-Nitrophenyl $\alpha$-Methoxyphenylacetate

  • Kwanghee Koh;Byung-Kue Kang
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.9
    • /
    • pp.795-799
    • /
    • 1994
  • Kinetic studies of the deacylation reactions of p-and m-nitrophenyl esters of (R or S)-${\alpha}$ -methoxyphenylacetic acid were performed in ${\beta}$ -CD, mono-6-deoxy-6-[N-(2-aminoethyl)]amino-${\beta}$-CD (${\beta}$-CDen) and mono-6-deoxy-6-[N-(2-aminoethyl)-2-aminoethyl] amino-${\beta}$-CD (${\beta}$-CDdien) media. The binding constants (K) of the substrates to the hosts and the rate constants ($k_{\varphi}^{CD}$) for the complexed substrates were determined. $k_{\varphi}^{CD}$ values are highly dependent on the hosts and the substrates, whereas differences in K values among them are modest. The p-nitrophenyl esters show larger acceleration by -${\beta}$-CDen and -${\beta}$-CDdien than the corresponding m-isomers, while the m-isomers are more reactive than the p-isomers in -${\beta}$-CD media. This is taken as an indication that the amino groups attached to the primary side of -${\beta}$-CD participate in the deacylation reaction.

Stoichiometric Solvation Effects. Solvolysis of Methanesulfonyl Chloride

  • Gu, In Seon;Yang, Gi Yeol;An, Seon Gyeong;Lee, Jong Gwang;Lee, Ik Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.955-956
    • /
    • 2000
  • Solvolyses of methanesulfonyl chloride in water, $D^2O$, $CH^3OD$, and in aqueous binary mixtures of acetone, eth-anol and methanol are investigated at 25, 35 and $45^{\circ}C.$ The Grunwald-Winstein plot of first-order rate con-stants for the solvolytic react ion of methanesulfonyl chloride with YCl (based on 2-adamantyl chloride) shows marked dispersions into three separate lines for three aqueous mixtures with a small m value (m < 0.30), and shows a rate maximum for aqueous alcoholic solvents. Stoichiometric third-order rate constants, kww and kaa were calculated from the observed first-order rate constants and (kaw + kwa) was calculated from the kww and kaa values. The kinetic solvent isotope effects determined in water and methanol are consistent with the proposed mechanism of the general base catalyzed and/or SAN/SN2 reaction mechanism for methanesulfonyl chloride solvolyses based on mass law and stoichiometric solvation effect studies.

Cross Interaction Constants As a Measure of the Transition State Structure (Part VI). Nucleophilic Substitution Reactions of Benzyl Chlorides with Anilines and Benzylamines

  • Lee, Ik-Choon;Huh, Chul;Koh, Han-Joong;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.6
    • /
    • pp.376-378
    • /
    • 1988
  • Results of kinetic studies on the reactions of benzyl chlorides with anilines and benzylamines are reported. Analyses of the cross interaction constants relevant to the degree of bond formation, ${\rho}_{XY}$ and ${\lambda}_{XY}$, are carried out. The magnitudes of the two parameters indicated that the degree of bond formation in the transition state is the typical of that expected for an $S_N2$ reaction, but the reactions with benzylamines appear to have a slightly less degree of bond formation compared with the reactions with anilines.

Kinetic Studies on the Reactions of NADH Analogs : Effects of 3-Substituents of 1-benzyl-1,4-Dihydropyridines

  • Park, Kwang-Hee;Kim, Hong-Gie;Park, Joon-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.5
    • /
    • pp.448-452
    • /
    • 1989
  • NADH analogs, 1-benzyl-3-substituted (X)-1,4-dihydropyridines 1-4 (1: X = $CONH_2$; 2: X = $CSNH_2$; 3: X = $COOCH_3$; 4: X = $COCH_3$) were synthesized. The second order rate constants for hydration reaction and oxidation reactions by $Cu^{2+}$, $Fe(CN)_6^{3-}$ or methylacridinium iodide (MAI) of the compounds were determined. For all reactions investigated, the rate constants increased with decreasing electronegative character of the 3-substituents of 1,4-dihydropyridines : the decreasing order of the reaction rates was 2>1>3>4. However, the sensitivity of the reaction rates on the 3-substituents differed among the reactions. This was explained in view of mechanisms of the reactions.

Mechanistic Change-Over in Nucleophilic Solvent Assisted Reactions

  • Sung, Dae Dong;Kim Yang Hee;Park Yoo-Mee;Ryu Zoon Ha;Lee Ickchoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.6
    • /
    • pp.599-605
    • /
    • 1992
  • Rate constants of methanolyses of para-Z-substituted benzenesulfonyl chlorides have been determined in various isodielectric solvent mixtures. A third-order kinetic behavior has been observed in the methanolysis of p-nitrobenzenesulfonyl chloride in methanol-nitromethane mixture from the correlation figure of logarithms of rate constants were plotted against Y-values based on solvolyses of 1-adamantyl tosylate. $S_N1$-$S_N2$ mixing mechanisms are favored by neutral or weak electron-donating and weak electron-withdrawing substituents of p-Z-substituted benzenesulfonyl chlorides in methanol-nitrobenzene mixture. While the methanolyses of para-Z-substituted benzenesulfonyl chlorides in methanol-ethylene glycol solvent mixture are appropriate for $S_N2$ mechanism from the mechanistic criterion by means of m-values.