• Title/Summary/Keyword: Kinematics Analysis

Search Result 634, Processing Time 0.034 seconds

Kinematics Analysis of the Milti-joint Robot Manipulator for an Automatic Milking System (자동 착유시스템을 위한 다관절 로봇 머니퓰레이터의 기구학적 분석)

  • Kim, W.;Lee, D.W.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.179-186
    • /
    • 2007
  • The purpose of this study was kinematics analysis of the multi-joint robot manipulator for an automatic milking system. The multi-joint robot manipulator was consisted of one perpendicular link and four revolution links to attach simultaneously four teat cups to four teats of a milking cow. The local coordinates of each joints on the robot manipulator was given for kinematics analysis. The transformation of manipulator was able to be given by kinematics using Denavit-Hatenberg parameters. The value of inverse kinematics which was solved by two geometric solution methods. The kinematics solutions was verified by AutoCAD, MATLAB, simulation program was developed using Visual C++.

  • PDF

The Forward Kinematics Solution for Casing Oscillator Using the Kinematic Inversion (기구학적 전이를 이용한 케이싱 오실레이터의 순기구학 해석)

  • 배형섭;백재호;박명관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.130-139
    • /
    • 2004
  • The Casing Oscillator is a bore file Equipment for the all-casing process. All-casing process is a method of foundation work in construction yard to oscillate steel Casing in the ground. The existing Casing Oscillator has some problem like not boring horizontally with disturbance and not driving Casing othor angle except horizon. To solve problem, the new structure Casing Oscillator is presented and studied. The performance of Casing Oscillator is improved by kinematics analysis. The Casing Oscillator is similar to the parallel manipulator in structure. So we obtain Inverse kinematics solution of Casing Oscillator easily. But it is difficult to solve forward kinematics of Casing Oscillator. T his paper presents a novel pose description corresponding to the structure characteristics of parallel manipulators. Through analysis on geometry theory, we obtain a new method of the closed-form solution to the forward kinematics using Kinematic Inversion. The closed-form solution contains two different meanings -analytical and real-time. So we reach the goal of practical application and control. Closed-form forward kinematics solution is verified by an inverse kinematics analysis. It shows that the method has a practical value for real -time control and inverse kinematics servo control.

Inverse and Forward Kinematics Analysis of 6 DOF Multi Axis Simulation Table and Verification (6 자유도 다축 시뮬레이션 테이블의 역.순기구학 해석 및 검증)

  • Jin, Jae-Hyun;Jeon, Seung-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.202-208
    • /
    • 2008
  • A 6 DOF Multi axis simulation table (MAST) is used to perform vibration and fatigue tests for parts or assemblies of automobiles, aircraft, or other systems. It consists of a table and 6 linear actuators. For its attitude control, we have to adjust the lengths of 6 actuators properly. The system is essentially a parallel mechanism. Three actuators are connected to the table directly and other three actuators are connected indirectly. Because of these, the MAST shows also a serial mechanism#s property: the inverse kinematics is more complicated than a pure parallel mechanism and each actuator can operate independently. The authors have performed a kinematics analysis of the 6 DOF MAST. We have presented an analytical and a numerical solution for the inverse and forward kinematics, and we have verified the solutions by a 3D CAD software.

The Analysis of the Forward Kinematics Using the Competitive Method in the Stewart Platform (경쟁기법을 이용한 스튜어트 플랫폼의 순기구학 해석)

  • 허성준;이형상;한명철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.255-258
    • /
    • 2001
  • This introduces a improved method of the forward kinematics analysis, which finds the 6DOF motions and velocities from the given six cylinder lengths in the Steward platform. The numerical method(Newton Raphson Mehotd)of the forward kinematics analysises has the disadvantage of the long calculated time. To overcome this, we propose the competitive method that determine a proper initial value. Through the competitive method, we can select a proper initial value so that the calculate time is reduced. therefore we can give the property of the real time process to the forward kinematics analysis. We show the result comparing between general Newton-Raphson method and proposed one. From the result we verify the performance of the proposed method.

  • PDF

Kinematics Analysis of a 2-DOF Parallel Manipulator (2개의 자유도를 가진 병렬 매니퓰레이터의 기구학 해석)

  • Lee, Jong-Gyu;Lee, Sang-Ryong;Lee, Choon-Young;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.64-71
    • /
    • 2012
  • In this paper, a parallel manipulator is comprised of two sliders and four links. Sliders execute a linear reciprocating motion depending on parallel guides and make the connected links rotate. A couple of links connected by sliders do coupling motion. The end-effector called a link tip has orientation angle. Through the kinematics analysis of this manipulator, we found displacement, velocity and acceleration using direct and inverse kinematics. We used equations that derived from this analysis and determined five constraint conditions. These conditions had much to do with rotation states of links, the relative relation of link length and coupling motion state. To verify those, we suggest a new algorithm regarding constraint conditions of a manipulator. With the result which performed the algorithm, we found out that operation range of coupled links was limited by relative relation of link length and that manipulator was not able to carry out a series of link motion, in case of being the link vertical between two parallel guides.

An analysis Inverse Kinematics for Real Time Operation of Industrial Robot (산업용 로봇의 실시간 운용을 위한 역기구학 해석)

  • 이용중
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.104-111
    • /
    • 1998
  • This study solves the inverse kinematics problem of industrial FANUC robot. Because every joint angle of FANUC robot is dependent on the position of end-effector and the direction of approach vector, arm metrix T6 is very complicated and each joint angle is a function of other joint angles. Therefore, the inverse kinematics problem can not be solved by conventional methods. Noticing the fact that if one joint angle is known, the other joint angles are calculated by the algebraic methods. $ heta$1 is calculated using neumerical analysis method, and solves inverse kinematics problem. This proposed method, in this study, is more simpler and faster than conventional methods and is very useful in the real-time control of the manipulator.

  • PDF

Kinematic Analysis and Optimal Design of 3-PPR Planar Parallel Manipulator

  • Park, Kee-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.528-537
    • /
    • 2003
  • This paper proposes a 3-PPR planar parallel manipulator, which consists of three active prismatic Joints, three passive prismatic joints, and three passive rotational joints. The analysis of the kinematics and the optimal design of the manipulator are also discussed. The proposed manipulator has the advantages of the closed type of direct kinematics and a void-free workspace with a convex type of borderline. For the kinematic analysis of the proposed manipulator, the direct kinematics, the inverse kinematics, and the inverse Jacobian of the manipulator are derived. After the rotational limits and the workspaces of the manipulator are investigated, the workspace of the manipulator is simulated. In addition, for the optimal design of the manipulator, the performance indices of the manipulator are investigated, and then an optimal design procedure Is carried out using Min-Max theory. Finally. one example using the optimal design is presented.

Overview of Various Measurement Tools for Shoulder Kinematics

  • Kim, Doo Sup;On, Myoung Gi;Yeom, Jun Seop
    • Clinics in Shoulder and Elbow
    • /
    • v.20 no.4
    • /
    • pp.244-249
    • /
    • 2017
  • Shoulder kinematics is important, as it is associated with shoulder arthropathy and pain mechanisms. Various static and dynamic analysis methods are prevalent for shoulder kinematics. These include 2-dimensional plane x-ray, computed tomography, and magnetic resonance imaging, cadaver study, electromagnetic motion analysis, transcortical bone pins technique, and in vivo 3-dimensional motion analysis. Although these methods provide the value of the shoulder kinematics angle, they are unable to explain why such changes occur. Since each method has its pros and cons, it is important to understand all factors accurately, and to choose a method that best meets the purpose of the researcher.

A Mechanics-Based Determination of Heating Lines in Line Heating Process (열변형 해석 기구를 통한 선상 가열에서의 가열선 수정에 관한 연구)

  • Yong-Gyun Kim;Jong-Gye Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.2
    • /
    • pp.45-51
    • /
    • 2002
  • In Line Heating method, heating line is determined by kinematics analysis. But the heating line, which is solved by kinematics analysis, doesn't verify by the point of physical analysis and the choice problem in many heating line doesn't determine. In this paper, the simulator is developed. When we get the processing information at the kinematics analysis, simulator can estimate the shape of deformed plate that process along the processing information. When we get the initial shape and the object shape, we calculate the processing information first, using kinematics analysis. In a simulator, we estimate deformed shape from the processing information. After this we compare deformed shape and object shape. If the error of deformed shape and object shape is in the proper limits, that information is determined the final processing information. Else we repeat the process changing variables.

Forward Kinematic Analysis of Casing Oscillator (케이싱 오실레이터의 순기구학 해석)

  • Nam, Yun-Joo;Park, Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1845-1855
    • /
    • 2004
  • This paper presents the forward kinematics of the Casing Oscillator that is a construction machine. The Structure of the Casing Oscillator is similar to those of 4 degree-of-freedom mechanisms with a redundancy. With analytical (geometrical) methods, the solutions of the forward position kinematics problem are significantly found by both solving an 8$^{th}$ -order polynomial equation in one unknown variable and using one over-constraint geometrical equation which can be derived under the condition of a redundancy. The proposed forward kinematics has closed-form solutions and allows Auto-Balancing control of the moving platform in real time. Numerical examples are presented and the results are verified by an inverse kinematics analysis.