• Title/Summary/Keyword: Kinematic factors

Search Result 184, Processing Time 0.024 seconds

A Correlational Study of Biomechanical Variables and Aesthetic Artistry in Grand Pas de Chat

  • Jung, Jung-Eun;Lee, Kyung-Ill
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.183-190
    • /
    • 2016
  • Objective: The objective of this study is to present a scientific basis for ballet dancer training methods by analyzing the relationships between subjective assessment of the ballet movement 'Grand pas de chat' and kinematic and electromyographic factors. Method: The subjects were 14 professional dancers with 15 years of experience on average. Four cameras and a wireless electromyogram were used to examine kinematic factors, and the filmed videos were analyzed by 3 experts for subjective assessment. Results: Although no differences in kinematic factors were found between the excellent dancer group and the non-excellent dancer group divided based on the experts' assessment, some difference was found in electromyographic factors, especially in relation to the gastrocnemius muscle, rectus femoris muscle, and erector spinae muscle. A relationship between subjective assessment and kinematic and electromyographic factors was found, and factors such as right-side rectus femoris activation, time required, left-side gastrocnemius activation, and front-back displacement affected subjective assessment. Conclusion: This study showed a relationship between subjective assessment and kinematic and electromyographic factors. To receive higher scores in subjective assessment, it is necessary to extend the hang time by using the lower limb muscles. The findings of this study also indicate the necessity of weight training in order to improve dancing techniques.

The Effects of Robot Assisted Gait Training on Kinematic Factors of the Stroke Patients (로봇보조 보행훈련이 뇌졸중 환자의 운동학적 요인에 미치는 효과)

  • Kim, Sung-Chul;Kim, Mi-Kyong;Yang, Dae-Jung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.1
    • /
    • pp.91-99
    • /
    • 2022
  • Purpose : The goal of this study is to examine the effect of robot assisted gait training (RAGT) on the kinematic factors (temporospatial gait parameters, gait cycle ratio, and gait line length) of gait in stroke patients. Methods : The subjects of this study were 24 stroke patients selected by inclusion criteria. Participants were randomly allocated to two groups: robot assisted gait training (n=11) and general neurological physical therapy group (n=11). In the robot-assisted gait training group, robot-assisted gait training was mediated for 30 minutes a day in addition to general neurological physical therapy. The general neurological physical therapy group was mediated by general neurological physical therapy for 30 minutes a day in addition to general neurological physical therapy. The number of interventions was 5 times a week for 5 weeks. In order to compare the kinematic factors of walking between the two groups, gait analysis was performed before and after 5 weeks of training using the Zebris gait analysis system. Results : As a result of the gait analysis of the two groups, there were significant differences in temporospatial gait variables (step length, stride length, step width, step time, stride time), gait cycle ratio (swing phase, stance phase) and gait line length. However, there was no significant difference in the cadence (temporospatial gait parameters) in the robot assisted gait training group compared to general neurological physical therapy group. Conclusion : It is considered to be a useful treatment for stroke patients to promote the recovery of gait function in stroke patients. Based on the results of this study, continuous robot assisted gait training treatment is considered to have a positive effect on gait ability, the goal of stroke rehabilitation. In the future, additional studies should be conducted on many subjects of stroke patients, the kinematic factors of the legs according to the severity of stroke and treatment period, and the effect of gait training.

Development of a Kinematic Wave Model to Route Overland Flow in Vegetated Area (II) -Runoff Plot Experiments and Model Application- (초지의 지표면 흐름을 추적하기 위한 Kinematic Wave Model의 개발(II) - 포장실험과 모형의 응용 -)

  • ;W.L.Magette
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.74-80
    • /
    • 1993
  • Runoff simulation tests to investigate the flow mechanics of nonsuomerged overland flow in a natural grass intervening land system were condueted and a modified kinematic wave overland runoff model developed by Choi et al. (1993) was verified. Nonhomogeneity and heterogeneity of the soil, slope, local topography, infiltration, grass density, and the density and activity of the soil microhes and wild animals were the major factors affecting the flow. Streamlines were disturbed by grass stems and small concentrated flows due to the disturbed streamlines and local topography were observed a lot. Relatively larger concentrated flows were observed where bundles of grass were dominant than where individual grasses were growing. Predicted hydrographs were agreed verv well with measured hydrographs. Since the modified model considers grass density in computing flow depth and hydraulic radius, it can be better than existing kinematic wave model if it were used to route nonpoint source pollutant attenuation processes in many grass intervening land systems.

  • PDF

Kinematic Design Sensitivity Analysis of Suspension systems Using Direct differentiation (직접미분법을 이용한 현가장치의 기구학적 민감도해석)

  • 민현기;탁태오;이장무
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.38-48
    • /
    • 1997
  • A method for performing kinematic design sensitivity analysis of vehicle suspension systems is presented. For modeling of vehicle suspensions, the multibody dynamic formulation is adopted, where suspensions are assumed as combination of rigid bodies and ideal frictionless joints. In a relative joint coordinate setting, kinematic constraint equations are obtained by imposing cut-joints that transform closed-loop shape suspension systems into open-loop systems. By directly differentiating the constraint equations with respect to kinematic design variables, such as length of bodies, notion axis, etc., sensitivity equations are derived. By solving the sensitivity equations, sensitivity of static design factors that can be used for design improvement, can be obtained. The validity and usefulness of the method are demonstrated through an example where kinematic sensitivity analysis of a MacPherson strut suspension of performed.

  • PDF

Kinematic Design Sensitivity Analysis of Vehicle Suspension Systems using a Numerical Differentiation Method (수치미분에 의한 차량 현가장치의 기구학적 민감도 해석)

  • 탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.128-137
    • /
    • 1998
  • A numerical approach for performing kinematic design sensitivity analysis of vehicle suspension systems is presented. Compared with the conventional analytical methods, which require explicit derivation of sensitivity equations, the proposed numerical method can be applied to any type of suspension systems without obtaining sensitivity equations, once any kinematic analysis procedure is established. To obtain sensitivity equations, a numerical differentiation algorithm that uses the third order Lagrange polynomial is developed. The algorithm efficiently and accurately computes the sensitivity of various vehicle static design factors with respect to kinematic design variables. Through a suspension design problem, the validity and usefulness of the method is demonstrated.

  • PDF

Kinematic and Kinetic Analysis of Upper Limb Motions During Horticultural Activities

  • Lee, A-Young;Park, Sin-Ae;Kim, Jai-Jeong;So, Jae-Moo;Son, Ki-Cheol
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.940-958
    • /
    • 2016
  • The objective of this study was to analyze the kinematic and kinetic characteristics of two horticultural activities: seed sowing and planting plant. Thirty-one male university students (aged $26.2{\pm}2.0years$) participated in this study. Kinematic factors (movement times, peak velocity, joint angles, and grasp patterns) were assessed using a three-dimensional motion analysis system while the subjects performed the horticultural activities. Kinetic factors (muscle activation of eight upper-limb muscles: the anterior deltoid, serratus anterior, upper trapezius, infraspinatus, latissimus dorsi, biceps brachii, brachioradialis, and flexor carpi radialis) were assessed using surface electromyography. The acts of seed sowing and planting plant were comprised of five tasks which included six types of phases: reaching, grasping, back transporting, forward transporting, watering, and releasing. The movement times, peak velocity, joint angles, and grasp patterns were significantly different across the tasks involved in the horticultural activities. All eight muscles of the upper limbs were utilized during the horticultural activities, and the muscle activation of the serratus anterior was the highest compared to that of the other muscles tested. The kinematic and kinetic characteristics of these horticultural activities showed similar characteristics to reaching and grasping rehabilitation training and daily living activities. The present study provides reference data for common horticultural activities using a kinematic and kinetic analysis.

Analysis of Kinematic Factors between Success and Failure of Free Aerial Cartwheel on the Balance Beam (평균대 한발 몸 펴 옆 공중돌기의 성패에 따른 운동학적 요인 분석)

  • Jung, Choong Min;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.1
    • /
    • pp.24-30
    • /
    • 2022
  • Objective: The purpose of this study was to determine the factors of successful and unsuccessful movements through the analysis of kinematics and muscle activity of the Free Aerial Cartwheel on the balance beam. Method: Subjects (Age: 22.8 ± 2.4 yrs., Height: 158.7 ± 5.0 cm, Body mass: 54.1 ± 6.4 kg, Career: 13 ± 2.4 yrs.) who were currently active as female gymnasts participated in the study. They had no history of surgical treatment within 3 months. Subject criteria included more than 10 years of professional experience in college and professional level of gymnastics and the ability to conduct the Free Aerial Cartwheel on the Balance Beam. Each subject performed 10 times of Free Aerial Cartwheel on the balance beam. One successful trial and one unsuccessful trial (failure) among 10 trials were selected for the comparison. Results: It was found that longer time required in case of unsuccessful trial when performing the Free Aerial Cartwheel on the balance beam compared with successful trial. It is expected to be the result of movement in the last landing section (i.e. phase 5). In addition, it was found that the center of gravity of the body descends at a high speed to perform the jump (i.e. phase 2) in order to obtain a sufficient jumping height when the movement is successful while the knee joint is rapidly extended to perform a jump when movement fails. In the single landing section after the jump (i.e. phase 4), if the ankle joint rapidly dorsiflexed after take-off and the hip joint rapidly flexed, so landing was not successful. Conversely, in a successful landing movement, muscle activity of the biceps femoris was greatly activated resulting no shaking in the last landing section (i.e. phase 5). Conclusion: In order to succeed in this movement, it is necessary to perform a strong jump after rapidly descending the center of gravity of the body using the force of the biceps femoris muscle. Further improvement of the skills on the balance beam requires the analysis of the game-like situation with continuous research on kinematic and kinematic analysis of various techniques, jumps, turns, etc.

A Comparative Study on the Kinematic Factors and GRF with Poombalbki Types in Taekkyon (택견 품밟기 유형에 따른 운동학적 변인과 지면반력 차이 분석)

  • Oh, Seong-Geun;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.57-65
    • /
    • 2010
  • Korean traditional martial arts Taekkyon has a unique stepping method, Poombalbki. The purpose of this study was to investigate kinematic factors and ground reaction forces on two types of Poombalbki, one of which use knee bending and the other use chiefly hip bending. Six male taekkyoners who are the students of Y University participated in this study. Positions and velocities of CoM, the elapsed times of each phase, angles and angular velocities of low limb joints, and GRFs were analyzed for this study. The results were as follows; CoMs of whole body, trunk, and head were more posteriorly positioned in performing hip bending Poombalbki than knee bending one. Horizontal velocities of those were slower in performing hip bending Poombalbki. A player stayed more shortly within range of his opponent in performing hip bending Poombalbki. The vertical and horizontal components of GRF of forward-stepping foot were smaller in performing hip bending Poombalbki(p<.05). In conclusion hip bending is useful strategy, because A player is farther from his opponent, he stayed more shortly within range of his opponent, and the smaller weight is loaded on his front foot in performing hip bending Poombalbki than knee bending one.

Drag Reduction Induced by Increased Kinematic Viscosity of Nanofluids Containing Carbon Nanotubes in A Horizontal Tube (카본나노튜브 나노유체의 동점성계수 증가로 인한 관내 유동에서의 항력 감소)

  • Yu, Jiwon;Jung, Se Kwon;Choi, Mansoo
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.271-277
    • /
    • 2013
  • This article reports the drag reduction phenomenon of aqueous suspensions containing carbon nanotubes (CNTs) flowing through horizontal tubes. Stable nanofluids were prepared by using a surfactant. It is found that the drag forces of CNT nanofluids were reduced at specific flow conditions compared to the base fluid. It is found that the friction factor of CNT nanofluids was reduced up to approximately 30 % by using CNT nanofluids. Increased kinematic viscosities of CNT nanofluids are suggested to the key factors that cause the drag reduction phenomenon. In addition, transition from laminar to turbulent flow is observed to be delayed when CNT nanofluids flow in a horizontal tube, meaning that drag reduction occurs at higher flow rates, that is, at higher Reynolds numbers.

Kinematic Characteristics in Female Pro Golfers' swings Intended to Increase Driving Distance (여자 프로골퍼의 드라이버 비거리증가를 위한 의도적인 스윙에 관한 운동역학적 특성)

  • Park, Hye-Lim;Kim, Jai-Jeong;So, Jae-Moo
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.4
    • /
    • pp.387-393
    • /
    • 2013
  • The purpose of this study was to investigate the difference of kinematic factors acting in the body during a normal swing and a swing taken with an intention to increase driving distance by female pro golfers. Female pro golfers may increase driver clubhead speed and improve driving distance through maintaining a large X-factor angle during backswing and delaying the uncocking period by rapidly shifting the weight to the left foot during downswing.