• Title/Summary/Keyword: Kinematic Viscosity

Search Result 121, Processing Time 0.032 seconds

Optimization of Waste Cooking Oil-based Biodiesel Production Process Using Central Composite Design Model (중심합성계획모델을 이용한 폐식용유 원료 바이오디젤 제조공정의 최적화)

  • Hong, Seheum;Lee, Won Jae;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.559-564
    • /
    • 2017
  • In this study, the optimization process was carried out by using the central composite model of the response surface methodology in waste cooking oil based biodiesel production process. The acid value, reaction time, reaction temperature, methanol/oil molar ratio, and catalyst amount were selected process variables. The response was evaluated by measuring the FAME content (more than 96.5%) and kinematic viscosity (1.9~5.5 cSt). Through basic experiments, the range of optimum operation variables for the central composite model, such as reaction time, reaction temperature and methanol/oil molar ratio, were set as between 45 and 60 min, between 50 and $60^{\circ}C$, and between 8 and 12, respectively. The optimum operation variables, such as biodiesel production reaction time, temperature, and methanol/oil molar ratio deduced from the central composite model were 55.2 min, $57.5^{\circ}C$, and 10, respectively. With those conditions the results deduced from modeling were as followings: the predicted FAME content of the biodiesel and the kinematic viscosity of 97.5% and 2.40 cSt, respectively. We obtained experimental results with deduced operating variables mentioned above as followings: the FAME content and kinematic viscosity of 97.7% and 2.41 cSt, respectively. Error rates for the FAME content and kinematic viscosity were 0.23 and 0.29%, respectively. Therefore, the low error rate could be obtained when the central composite model among surface reaction methods was applied to the optimized production process of waste cooking oil raw material biodiesel.

In-line Oil Viscosity Sensor Implementing An Elastomagnetic Ribbon Resonance (자기탄성체 리본의 공진을 이용한 인-라인 오일 점도센서)

  • Kong, H.;Han, H.G.;Markova, L.V.
    • Tribology and Lubricants
    • /
    • v.26 no.2
    • /
    • pp.97-104
    • /
    • 2010
  • A new magnetoelastic technique of oil viscosity measurement, where the oil viscosity is estimated by frequency shift of natural oscillations of magnetoelastic ribbon, is implemented in this study. Laboratory tests of the detector prototype are performed for measurement of viscosity of base synthetic and mineral oils. It was found that measurement accuracy was better when damping factor was estimated in comparison with accuracy of frequency of damped oscillations. Thus the oil viscosity was calibrated as a function of number of pulses of the damped oscillations of magnetoelastic ribbon. Result generally showed that developed detector is promising for in line oil viscosity measurement in wide viscosity range from 10 cSt up to 600 cSt, while the viscosity measurement was relatively instable when the viscosity of test oil was over 400 cSt.

Experimental Study on the Tribological Characteristics of Diluted Engine Oil by Diesel Fuel (디젤유가 혼입된 엔진오일의 트라이볼로지 특성에 관한 실험적 연구)

  • Kim, Han-Goo;Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.21 no.4
    • /
    • pp.159-164
    • /
    • 2005
  • An experimental study was conducted to evaluate characteristic variation of diluted engine oils in which contains diesel fuels and its tribological effects on engine components. In this study, diluted engine oils with $10\%,\;15\%,\;and\;20\%$ of initial fuel content rate have been used for measuring the viscosity reduction rate, blow-by gas increment rate, main gallery pressure reduction rate, and fuel content rate in engine oils. These parameters are strongly related to the tribological characteristics of key engine components. The kinematic viscosity of engine oils in which is contained by diesel fuels from $10\%\;to\;20\%$ in oils is decreasing to approximately $54\%$ of initial diluted fuel-oil volume ratios. The experimental results show that the distillated engine oil decrease the viscosity of engine oil and its oil film stiffness, and increase the wear rate of rubbing parts of engine components. Thus we recommend that the containing volume rate of fuels in engine oils should be restricted to $3\~4\%$ for a sophisticated Diesel engine and $5\~7\%$ for a standard one.

Tribological Influence of Kinematic Oil Viscosity Impregnated in Nanopores of Anodic Aluminum Oxide Film (함침 오일 점도에 따른 나노동공 구조의 산화알루미늄 박막의 마찰 및 마멸 거동)

  • Kim, Dae-Hyun;Ahn, Hyo-Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.625-630
    • /
    • 2013
  • The friction behavior of a 60-${\mu}m$-thick anodic aluminum oxide (AAO) film having cylindrical nanopores of 45-nm diameter was investigated as a function of impregnated oil viscosity ranging from 3.4 to 392.6 cSt. Reciprocating ball-on-flat sliding friction tests using a 1-mm-diameter steel ball as the counterpart were carried out with normal load ranging from 0.1 to 1 N in an ambient environment. The friction coefficient significantly decreased with an increase in the oil viscosity. The boundary lubrication film remained effectively under all test conditions when high-viscosity oil was impregnated, whereas it was easily destroyed when low-viscosity oil was impregnated. Thin plastic deformed layer patches were formed on the worn surface with high-viscosity oil without evidence of tribochemical reaction and transfer of counterpart material.

Conversion of Beef Tallow and Its Mixed Fat into Biodiesel by Alkali Catalysts (알칼리 촉매에 의한 우지(Beef Tallow)와 그 혼합지방의 Biodiesel화)

  • Hyun, Young-Jin;Kim, Hae-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.190-195
    • /
    • 2007
  • The transesterifications of beef tallow and the mixture of beef tallow and rapeseed oil were conducted at $65^{\circ}C$ respectively using TMAH, NaOH and their mixed catalysts. The reactants were emulsified with 1vol% emulsifier and propylene glycol. The overall conversion of beef tallow was 95% at such optimum conditions as the 1:8 of molar ratio and 0.8 wt% TMAH. The overall conversion of mixed fat at the 1:8 of molar ratio and mixed catalyst of 70 wt% TMAH 30 wt% NaOH was close to 97% which appeared at 0.8 wt% TMAH in 80min. And the kinematic viscosity of biodiesel mixture using the mixed catalyst was $6.5mm^2/s$ at $40^{\circ}C$.

Preparation of Reactive Flame Retardant Coatings Containing Phosphorus;I. Synthesis of Pyrophosphoric Modified Polyesters (반응형 인계 난연도료의 제조;I.피로포스포릭 변성폴리에스테르의 합성)

  • Chung, Dong-Jin;Jung, Choong-Ho;Park, Hong-Soo;Kim, Tae-Ok;Park, Shin-Ja
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.57-63
    • /
    • 2003
  • An intermediate, tetramethylene bis (orthophosphate), was prepared by the esterification of pyrophosphoric acid and l,4-butanediol. Then pyrophosphoric-containing modified polyesters (ATTBs) were synthesized by polycondensation of tetramethylene bis(orthophosphate), trimethylolpropane, adipic acid, and l,4-butanediol. The content of l,4-butanediol was varied from 10 to 20wt% for the reaction. The increase of the amount of l,4-butanediol in the synthesis of ATTBs resulted in increase in average molecular weight and decrease in kinematic viscosity owing to the excellent flowability and reactivity of l,4-butanediol.

The Conversion of Jatropha Oil into Biodiesel Using Acid / Alkali Catalysts (산 / 알칼리 촉매를 사용한 자트로파유의 바이오디젤화)

  • Hyun, Young-Jin;Kim, Hae-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.275-281
    • /
    • 2008
  • The esterification of free fatty acid in Jatropha oil added by propylene glycol using p-TSA catalyst was done, and then the transesterification of Jatropha oil added by 1.0vol% GMS as an emulsifier using TMAH, and mixed catalyst(60wt%-TMAH+ 40wt%-KOH) respectively was followed at $60^{\circ}C$. The esterification conversion at the 1:8 molar ratio of free fatty acid to methanol using 8.0wt% p-TSA was 94.7% within 60min. The overall conversion at the 1:8 molar ratio of Jatropha oil to methanol and $60^{\circ}C$ using mixed catalyst was 95.4%. The kinematic viscosity of Biodiesel using TMAH and mixed catalyst in 24h met the ASTM D-6751 above $30^{\circ}C$, and showed a little more than its criterion.

Experimental Study on Mixing Stability and Macroscopic Spray Characteristics of Diesel-gasoline Blended Fuels (디젤-가솔린 혼합연료의 혼합안정성 및 거시적인 분무 특성에 관한 실험적 연구)

  • Park, Sewon;Park, Su Han;Park, Sungwook;Chon, Mun Soo;Lee, Chang Sik
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.121-127
    • /
    • 2012
  • The study is to investigate the mixing stability, fuel properties, and macroscopic spray characteristics of diesel-gasoline blended fuels in a common-rail injection system of a diesel engine. The test fuels were mixed diesel with gasoline fuel, which were based volume fraction of gasoline from 0 to 100% in 20% intervals. In order to analyze the blended effect of gasoline to diesel fuel, the properties of test fuels such as density, viscosity, and surface tension were measured. In addition, the spray behavior characteristics were studied by investigating the spray tip penetration and spray angle using a spray images through a spray visualization system. It was revealed that the density, kinematic viscosity and surface tension of diesel-gasoline blending fuels were decreased with the increase of gasoline fuel. The injection quantity of test fuels were almost similar level at short energizing duration condition. On the other hand, the increase of energizing duration shows the decrease of injection quantity compared to short energizing duration. The test blending fuels have similar growth in Spray tip penetration and Spray cone angle.

Correlations for Predicting Viscosity of Vegetable Oils and Its Derivatives for Compression Ignition Engines

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.14 no.3
    • /
    • pp.122-130
    • /
    • 2009
  • Vegetable oil and its derivatives as an alternative diesel fuel have become more attractive recently because of its environmental benefits and the fact that they are made from renewable resources. Viscosity is the most significant property to affect the utilization of vegetable oil and its derivatives in the compression ignition engines. This paper presents the existing correlations for predicting the viscosity of vegetable oil and its derivatives for compression ignition engines. According to the parameter considered in the correlations, the empirical correlations can be divided into six groups: correlations as a function of temperature, of proportion, of composition, of temperature and composition, of temperature and proportion, and of fuel properties. Out of physical properties of fuel, there exist in the literature several parameters for giving the influence on kinematic viscosity such as density, specific gravity, the ratio of iodine value over the saponification value, higher heating value, flash point and pressure. The study for the verification of applicability of existing correlations to non-edible vegetable oil and its derivatives is required.

  • PDF