• Title/Summary/Keyword: Kinematic Survey

Search Result 70, Processing Time 0.02 seconds

Quality Test and Control of Kinematic DGPS Survey Results

  • Lim, Sam-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.5 s.23
    • /
    • pp.75-80
    • /
    • 2002
  • Depending upon geographical features and surrounding errors in the survey field, inaccurate positioning is inevitable in a kinematic DGPs survey. Therefore, a data inaccuracy detection algorithm and an interpolation algorithm are essential to meet the requirement of a digital map. In this study, GPS characteristics are taken into account to develop the data inaccuracy detection algorithm. Then, the data interpolation algothim is obtained, based on the feature type of the survey. A digital map for 20km of a rural highway is produced by the kinematic DGPS survey and the features of interests are lines associated with the road. Since the vertical variation of GPS data is relatively higher, the trimmed mean of vertical variation is used as criteria of the inaccuracy detection. Four cases of 0.5%, 1%, 2.5% and 5% trimmings have been experimented. Criteria of four cases are 69cm, 65cm, 61cm and 42cm, respectively. For the feature of a curved line, cublic spine interpolation is used to correct the inaccurate data. When the feature is more or less a straight line, the interpolation has been done by a linear polynomial. Difference between the actual distance and the interpolated distance are few centimeters in RMS.

  • PDF

A Study on the Applicability of the Kinematic and the Static GPS Methods for Coastal Ocean Structure Survey

  • Lee, Byung-Gul;Yang, Sung-Kee;Kang, In-Jun
    • Journal of Environmental Science International
    • /
    • v.11 no.2
    • /
    • pp.103-110
    • /
    • 2002
  • The position fixing usually is determined by triangulation, traverse surveying and astronomy surveying. However, when the station is moving, it is impossible to determine its position continuously by the former method. By a satellite positioning method(GPS), this problem can be solved. In our study, we used two methods to determine the length and coordinate of a point position. One is a kinematic GPS method and the other is a static one. Each is based on carrier phase measurement and employs a relative position technique. We implemented observation experiments such as Geodimeter and DGPS(Differential GPS) successfully. To estimate the accuracy between the kinematic and static methods, we compared the results of Geodimeter, the kinematic, and the static. The results showed that the static is relatively a little more accurate than the kinematic. However, in the kinematic mode, when we received the GPS data for a long time, we found that the kinematic also had a high accuracy value for the length survey Finally, we applied the GPS to Jeju Harbor Breakwater to examine the applicability of GPS for coastal ocean structure based on the kinematics and the statics, respectively.

A Magnetic Survey on the Lake for the Detection of the Unexploded Ordnances (위험물탐지를 위한 수상 자력탐사)

  • Jo Churl-hyun;Jung Yong Hyun;Lee Hyo Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.1
    • /
    • pp.23-27
    • /
    • 2003
  • A magnetic survey on the lake war carried out to explore the possible UXO (unexploded ordnance) under the water. A magnetic gradiometer with 2 magnetometer sensors was used, which measures total magnetic intensity. For the positioning of the measurement points on the water, RTK (real time kinematic) survey system was used. The theoretical responses were calculated assumming the dimension and the material of the UXO so that the detectability could be investigated. Since the areal size of the survey vessel was rather small, the influence from the magnetic material of the vessel and the other equipments such as a laptop computer was not negligible, and the influence did not remain constant during the survey due to the change of survey direction. These effects were reduced remarkably using moving average technique. The result reveals the lineament of a pipe line laid on the bottom of the lake, which can be regarded as an indirect proof of detectability of the method.

TRAVEL TIME TOMOGRAPHY

  • Uhlmann, Gunther
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.711-722
    • /
    • 2001
  • We survey recent results on the inverse kinematic problem arising in geophysics. The question is whether one can determine the sound speed (index of refraction) of a medium by measuring the travel times of the corresponding ray paths. We emphasize the anisotrpic case.

  • PDF

The Construction of Kinematic Survey System for the Efficiency of GPS Cadastral Survey (지적측량 효율성 향상을 위한 GPS 이동측량 시스템 구축)

  • 김경택;장지원
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.4
    • /
    • pp.389-398
    • /
    • 2002
  • As the necessity of land information has increased according to development of computer and Information-communication, people have been interested in the satellite measurement system that can update Cadastral and Geographical information rapidly and exactly. Most Cadastral base points which had limitation of measurement technology in the 1910s were less accurate and were destroyed through the Korean War. They also many problems in the process of reinstallation. So, they require the quick and correct method of measurement in re-equipment of a base point and a parcel based survey and so on. This study intends to present the GPS survey direction by understanding and analysing all sorts of problems rising in case of applying the GPS to cadastral area in order to increase the efficiency of the GPS measurement, and also develop the GPS kinematic survey program to apply to the efficiency of a kinematic survey. As a result of research, I could confirm the accuracy of Cadastral base points in Kwangju area by using Korea GPS array and a base point, and could get the result similar to existent cadastral survey result with the coordinate conversion program of Cadastral technology research institute. We however have to pay our attention to the transformation of the plane coordinates because the difference between tens of cm and the existing result can outbreak according to the Gauss conformal double projection method. And, I could figure out the practicality of the developed GPS kinematic survey program, compared with common use program. I expect that it can be applied to the digital cadastral survey and the cadastral map renewal as well.

Experimental Analysis of Kinematic Network-Based GPS Positioning Technique for River Bathymetric Survey

  • Lee, Hungkyu;Lee, Jae-One;Kim, Hyundo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.4
    • /
    • pp.221-233
    • /
    • 2016
  • This paper deals with performance assessment of the kinematic network-based GPS positioning technique with a view to using it for ellipsoidally referenced bathymetric surveys. To this end, two field trials were carried out on a land vehicle and a surveying vessel. Single-frequency GPS data acquired from these tests were processed by an in-house software which equips the network modeling algorithm with instantaneous ambiguity resolution procedure. The results reveals that ambiguity success rate based on the network model is mostly higher than 99.0%, which is superior to that of the single-baseline model. In addition, achievable accuracy of the technique was accessed at ${\pm}1.6cm$ and 2.7 cm with 95% confidence level in horizontal and vertical component respectively. From bathymetric survey at the West Nakdong River in Busan, Korea, 3-D coordinates of 2,011 points on its bed were computed by using GPS-derived coordinates, attitude, measured depth and geoid undulation. Note that their vertical coordinates are aligned to the geoid, the so-called orthometric height which is widely adopted in river engineering. Bathymetry was constructed by interpolating the coordinate set, and some discussion on its benefit was given at the end.

The Study about Accuracy Kinematic GPS Survey (정확한 동적 GPS 측량에 관한 연구)

  • 박운용;이종출;이인수;나종기
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.45-49
    • /
    • 2004
  • The Navstar Global Positioning System(GPS) is an advanced navigation satelite system for determination of position, velocity and time. It can provide three-dimensional positioning on a global basis, independent of weather, 24 hours per day. Test results show that the carrier phase and pseudorange corrections are suitable for a kinematic GPS system. Using these corrections are more effective than using raw GPS data, since fewer bits are required for transmission Additionally, the number of computation required at the rover is reduced when corrections, rather than raw measurement are transmitted

  • PDF

Accuracy Analysis of Kinematic SBAS Surveying (SBAS 이동측위 정확도 분석)

  • Kim, Hye In;Son, Eun Seong;Lee, Ho Seok;Kim, Hyun Ho;Park, Kwan Dong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.5
    • /
    • pp.493-504
    • /
    • 2008
  • Space-Based Augmentation System (SBAS), which is one of the GPS augmentation systems, is a Wide-Area Differential GPS that provides differential GPS corrections and integrity data. In this study, we did performance analysis of kinematic SBAS surveying by conducting Real-Time Kinematic (RTK), DGPS, standalone, and SBAS surveys. Considering static survey results as truth, 2-D Root Mean Square (RMS) error and 3-D RMS error were computed to evaluate the positioning accuracy of each survey method. As a result, the 3-D positioning error of RTK was 13.1cm, DGPS 126.0cm, standalone (L1/L2) 135.7cm, standalone (C/A) 428.9cm, and SBAS 109.2cm. The results showed that the positioning accuracy of SBAS was comparable to that of DGPS.

Chemical and Kinematic Properties of the Galactic Halo System

  • Jung, Jaehun;Lee, Young Sun;Kim, Young Kwang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.80.2-80.2
    • /
    • 2017
  • We present chemical and kinematic properties of the Milky Way's halo system investigated by carbon-enhanced metal-poor (CEMP) stars identified from the Sloan Digital Sky Survey. We first map out fractions of CEMP-no stars (those having no over-abundances of neutron-capture elements) and CEMP-s stars (those with over-enhancements of the s-process elements) in the inner- and outer-halo populations, separated by their spatial distribution of carbonicity ([C/Fe]). Among CEMP stars, the CEMP-no and CEMP-s objects are classified by different levels of absolute carbon abundances, A(C). We investigate characteristics of rotation velocity and orbital eccentric for these subclasses for each halo population. Any distinct kinematic features identified between the two categories in each halo region provide important clues on the origin of the dichotomy of the Galactic halo.

  • PDF

The Role of Kinematics in Robot Development (로봇발전과 기구학의 역할)

  • Youm, Youngil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.333-344
    • /
    • 2014
  • This is the survey paper on the role of kinematics in robot development. The robot is considered as a form of mechanical systems which includes closed-chain loop system, open-chain loop system and closed and open switching system. To analyze these systems, kinematic notations has been developed in kinematics of mechanical theory since 1955 and has been applied in robotics. Several kinematic notations including Denavit-Hartenberg notations have been reviewed. The status of development of the spherical motor which has a great impact on the future robot advancement has reviewed, and research activity on a spherical motor and its application to 3-D spatial mechanisms at UNIST is introduced. For the open and closed switching mechanical systems, the bipedal robots' walking theories using Zero Moment Point are reviewed. And current status regarding bipedal robots based on newly developed passive dynamic walking theory is reviewed with the research activity at UNIST on this subject.