• Title/Summary/Keyword: Kinematic Optimal Design

Search Result 88, Processing Time 0.028 seconds

Multi-objective optimization of double wishbone suspension of a kinestatic vehicle model for handling and stability improvement

  • Bagheri, Mohammad Reza;Mosayebi, Masoud;Mahdian, Asghar;Keshavarzi, Ahmad
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.633-638
    • /
    • 2018
  • One of the important problems in the vehicle design is vehicle handling and stability. Effective parameters which should be considered in the vehicle handling and stability are roll angle, camber angle and scrub radius. In this paper, a planar vehicle model is considered that two right and left suspensions are double wishbone suspension system. For a better analysis of the suspension geometry, a kinestatic model of vehicle is considered which instantaneous kinematic and statics relations are analyzed simultaneously. In this model, suspension geometry is considered completely. In order to optimum design of double wishbones suspension system, a multi-objective genetic algorithm is applied. Three important parameters of suspension including roll angle, camber angle and scrub radius are taken into account as objective functions. Coordinates of suspension hard points are design variables of optimization which optimum values of them, corresponding to each optimum point, are obtained in the optimization process. Pareto solutions for three objective functions are derived. There are important optimum points in these Pareto solutions which each point represents an optimum status in the model. In other words, corresponding to any optimal point, a specific geometric position is determined for the suspension hard points. Each of the obtained points in the Pareto optimization can be selected for a special design purpose by designer to create an optimum condition in the vehicle handling and stability.

Analysis and Design of a New 6-DOF Haptic Device Using a Parallel Mechanism (병렬구조를 이용한 새로운 6 자유도 역감제시장치의 설계 및 해석)

  • Yoon, Jung-son;Ryu, Je-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1178-1186
    • /
    • 2001
  • This paper presents design and analysis of a 6 degree-of-freedom new haptic device using a par-allel mechanism for interfacing with virtual reality. The mechanism is composed of three pantograph mecha-misms that, driven by ground-fixed servomotors. stand perpendicularly to the base plate. Three spherical joints connect the top of the pantograph with connecting bars, and three revolute joint connect connecting bars with a mobile joystick handle. Forward and inverse kinematic analyses have been performed and the Jacobian matrix is derived by using the screw theroy. Performance indices such as GPI(Global Payload Index), GCI(Global Conditioning index), Traslation and Orientation workspaces, and Sensitivity are evaluated to find optimal pa-rameters in the design stage. The proposed haptic mechanism has better load capability than those of the ex-isting haptic mechanisms due to the fact that motors are fixed at the base. It has also wider orientation work-space mainly due to RRR type spherical joints.

  • PDF

A Study on the Dynamic Characteristic Analysis of Multi-axis Simulator (다축 제어 시뮬레이터의 동특성 해석에 관한 연구)

  • 정상화;박용래;류신호;김현욱;나윤철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.715-718
    • /
    • 2001
  • Test in the development of vehicle consist of driving test and simulation test. The last one has many advantages. It can reduce time and cost during development, can overcome the spacial and environmental limitation, and can provides repeatabilities of similar experiments and various data. In these reason, the simulation test is used more for analysis and development of new vehicle. In this research the result of kinematic analysis on multi-axis simulator is compared with the simulated result using dynamic analysis program, ADAMS, and the maximum stress and strain are analyzed for the safety of link and specifications of optimal design using finite element method.

  • PDF

The Study for Design of Tilting Mechanism and Guide Track of Pantograph for Tilting Train (틸팅열차용 판도그라프의 틸팅 기구장치 및 가이드 트랙 형상 설계 연구)

  • Kim Nam-Po;Han Seong-Ho;Ko Tae-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.500-506
    • /
    • 2005
  • The development of tilting train has been required for speed-up on the conventional electric railroad due to the characteristic of Korean railroad with a lot of curve track. The study and development of a tilting system and a tilting bogie which have a different mechanism with high speed train will play a important role for enhancement of technology for Korean railway. The study for tilting pantograph mechanism to decrease the displacement between a catenary and a center of pantograph happened when the carbody is tilted in order to maintain the ride comfort and stability m a curving track is proceeding with the development of tilting train. In this paper, we introduce the design concept for the tilting mechanism of pantograph and the role and characteristics for several devices adopted in the tilting mechanism of pantograph. Through the kinematic analysis of tilting mechanism, we will obtain and calculate the optimal tilting angular velocity and acceleration in order to keep the contact behavior of a pantograph and a catenary according to tilting of a carbody.

Development of a 6 degrees-of-freedom micro stage for ultra precision positioning (초정밀작업을 위한 6자유도 마이크로 스테이지의 개발)

  • Kim, Kyung-Chan;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.372-379
    • /
    • 1998
  • A new 6 degrees-of-freedom micro stage, based on parallel mechanisms and actuated by using piezoelectric elements, has been developed for the application of micro positioning such as semiconductor manufacturing devices, high precision optical measurement systems, and high accurate machining. The micro stage structure consists of a base platform and an upper platform(stage). The base platform can effectively generates planar motion with yaw motion, while the stage can do vertical motion with roll and pitch motions with respect to the base platform. This separated structure has an advantage of less interference among actuators. The forward and inverse kinematics of the micro stage are discussed. Also, through linearization of kinematic equations about an operating point on the assumption that the configuration of the micro stage remains essentially constant throughout a workspace is performed. To maximize the workspace of the stage relative to fixed frame, an optimal design procedure of geometric parameter is shown. Hardware description and a prototype are presented. The prototype is about 150mm in height and its base platform is approximately 94mm in diameter. The workspace of the prototype is obtained by computer simulation. Kinematic calibration procedure of the micro stage and its results are presented.

Optimization of Parallel Lift of a Wheel Loader Through Analysis of Working Characteristics of Links (휠로더의 작업장치 링크 특성 분석을 통한 수평 인양 최적화)

  • Park, Hyun Gyu;Jang, Jin Seok;Yoo, Wan Suk;Kim, Min Seok;Lee, Hee Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.389-395
    • /
    • 2016
  • Wheel loaders are utilized not only on construction sites, but also for general purposes, such as manufacturing and transportation. Therefore, during the basic design stage of this type of working device equipment, the designer should consider specifications as well as working performance. In this research, a characteristic analysis program was developed for use in the basic design stage of construction equipment using multibody dynamics analysis. In addition, through the optimization of its links, improvements to the lifting capability of a Z-bar-linkage-type wheel loader were suggested. Using the developed program and process, it is possible to reduce the time required for the basic design of the working device.

A Study on the Design of Dynamic System and Vibration Isolation System in a High-speed Press (고속프레스의 다이나믹 시스템 및 방진시스템 설계에 관한 연구)

  • Suh, Jin Sung;Jeong, Chel-Jea;Hyeon, Gi-Yong;Ryoo, Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.856-865
    • /
    • 2015
  • In a high-speed press, numerous moving links are interconnected and each link executes a constrained motion at high speed. As a consequence, high-level dynamic unbalance force and unbalance moment are transmitted to the main frame of the press, which results in unwanted vibration and significantly degrades manufacturing accuracy. Dynamic unbalance force and unbalance moment inevitably transmits high-level vibrational force to the foundation on which the press is installed. Minimizing the vibrational force transmitted to the foundation is critical for the protection of both the operators and the surrounding structures. The whole task should be carried out in two steps. The first step is to reduce dynamic unbalance based upon kinematic and dynamic analyses. The second step is to design and build an optimal vibration isolation system minimizing the vibrational force transmitted to the foundation. Firstly, the dynamic design method is presented to reduce dynamic unbalance force and moment. For this a 3D CAD software was utilized and a computer program was written to compute dynamic unbalance force and moment. Secondly, the design method for vibration isolation system is presented. The method for designing coil springs and viscous dampers are explained in detail.

Possibility of Obtaining Lubricant Base Oil from Talakan Crude Oil Suitable for Exploitation in Extremely Cold Conditions in the Republic of Sakha (Yakutia)

  • Zhirkov, N.P.;Zakharova, S.S.;Sung, Zoo-One
    • Tribology and Lubricants
    • /
    • v.31 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • This paper addresses the problems of using anti-freeze lubricants for different machines that must function at extremely low temperatures during winter operation in the Republic of Sakha (Yakutia). We discuss the possibility of obtaining anti-freeze base oils from Talakan crude oil, an area with major oil and gas deposits of the Republic of Sakha, and also provide the trade and technological classification of Talakan crude oil. We propose two different schemes for processing Talakan crude oil: the fuel scheme (obtaining light and heavy fractions as a fuel oil) and the base oil scheme (obtaining light fractions and base oils). We investigate the influence of pour point depressants on alkyl-methacrylate base on the low-temperature properties of the fractions obtained from Talakan crude oil and Korean base oils, and establish the optimal concentration of pour point depressants. We compare the properties of these fractions with the low-temperature properties of Korean base oils and find that the commercial oil "Ravenol 0W-40" provides optimistic results. We obtain oil with a pour point of minus $50^{\circ}C$ and a viscosity index greater than 100. The Design of Experiment was used to establish the optimum composition of the pour point depressants and the base oil S-8 to obtain lubricant oil with a kinematic viscosity of 17 cSt, viscosity index of 208, and a pour point of minus $64^{\circ}C$.

Optimal Design of Brake System considering Vehicle Vibration and Durability of Rotor (차량진동 및 Rotor 내구특성을 고려한 Brake System 의 최적설계)

  • Kim, B.S.;Kim, H.Y.;Kim, K.W.;Son, Y.K.;Lee, D.G.;Park, K.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.764-769
    • /
    • 2001
  • Brake-induced vibrations of a vehicle such as brake judder are determined by the excitation of brake torque variations and by their transfer to the driver's contact points via suspension, body and steering system. The formation of brake torque variation is mainly determined by static and dynamic disk thickness variations. The vibration transfer from the excitation by brake torque variation to the perception by the driver depends on the kinematic and dynamic behaviour of the components in the transfer path. Optimization of the judder performance can be achieved either by minimizing the excitation or by reduction of the judder sensitivity of the vehicle. In this paper, the optimization process of a front rotor is suggested to reduce brake judder considering the cooling performance of the rotor, the judder sensitivity of the vehicle and durability of the rotor.

  • PDF

A Study on the Optimal Design of a R-S-S-R Three Dimensional Mechanism (3次元 R-S-S-R 機構의 最適設計 에 관한 硏究)

  • 김호룡;김경률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.528-538
    • /
    • 1985
  • A R-S-S-R three dimensional mechanism is designed for crank-rocker type through the optimization technique. The nonlinear kinematic equation of the mechanism is formulated by adopting the concept of structural error and precision points. Taking this equation as an objective function, the required mechanism is optimally synthesized by the Fletcher-Davidon-Powell's method of optimization techniques. The structural errors due to the various positions of precision points are compared, and the results from the use of two penalty functions suggested respectively by Fiacco-McCormick and by Powell are also compared on their effectiveness. The mobility of the optimally designed mechanism is checked for the possibility of its motion, and when a mechanism is optimally designed, it is strongly suggested that the mobility must be checked on the designed mechanism.