• Title/Summary/Keyword: Kinematic GPS

Search Result 178, Processing Time 0.025 seconds

Precise Orbit Determination of GRACE-A Satellite with Kinematic GPS PPP

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Yoo, Sung-Moon;Jo, Jung-Hyun;Lee, Sang-Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.59-64
    • /
    • 2012
  • Precise Point Positioning (PPP) has been widely used in navigation and orbit determination applications as we can obtain precise Global Positioning System (GPS) satellite orbit and clock products. Kinematic PPP, which is based on the GPS measurements only from the spaceborne GPS receiver, has some advantages for a simple precise orbit determination (POD). In this study, we developed kinematic PPP technique to estimate the orbits of GRACE-A satellite. The comparison of the mean position between the JPL's orbit product and our results showed the orbit differences 0.18 cm, 0.54 cm, and 0.98 cm in the Radial, in Along-track, and Cross-track direction respectively. In addition, we obtained the root mean square (rms) values of 4.06 cm, 3.90 cm, and 3.23 cm in the satellite coordinate components relative to the known coordinates.

Quality Test and Control of Kinematic DGPS Survey Results

  • Lim, Sam-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.5 s.23
    • /
    • pp.75-80
    • /
    • 2002
  • Depending upon geographical features and surrounding errors in the survey field, inaccurate positioning is inevitable in a kinematic DGPs survey. Therefore, a data inaccuracy detection algorithm and an interpolation algorithm are essential to meet the requirement of a digital map. In this study, GPS characteristics are taken into account to develop the data inaccuracy detection algorithm. Then, the data interpolation algothim is obtained, based on the feature type of the survey. A digital map for 20km of a rural highway is produced by the kinematic DGPS survey and the features of interests are lines associated with the road. Since the vertical variation of GPS data is relatively higher, the trimmed mean of vertical variation is used as criteria of the inaccuracy detection. Four cases of 0.5%, 1%, 2.5% and 5% trimmings have been experimented. Criteria of four cases are 69cm, 65cm, 61cm and 42cm, respectively. For the feature of a curved line, cublic spine interpolation is used to correct the inaccurate data. When the feature is more or less a straight line, the interpolation has been done by a linear polynomial. Difference between the actual distance and the interpolated distance are few centimeters in RMS.

  • PDF

저가의 후처리 GPS를 이용한 매핑 시스템 연구

  • 임수봉;이봉희
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.11a
    • /
    • pp.431-435
    • /
    • 2003
  • GPS측량 방법은 크게 나누어 후처리 방법과 실시간 처리 방법으로 구분되며 후처리 방법은 다시 Static, Stop&Go 및 동적(Kinematic) 방법으로 세분되고 실시간 처리 방법은 DGPS(Differential GPS)와 RTK(Realtime Kinematic) 방법으로 세분된다. 이와 같은 여러 가지 측량법 중 우리나라의 실무에서는 유독 후처리 방법 중의 Static 측량과 실시간 처리방법중의 DGPS 측량이 주로 사용되어 왔는데, 그런 배경에는 여러 가지 원인이 있으나 무엇보다도 가장 큰 원인은 공공측량 작업규정 등의 측량 관련 법규에서 다양한 종류의 GPS측량기법을 제도적으로 인정하지 못함으로 인하여 일반 측량기술자들의 GPS에 대한 인식이 결여된 때문이라 볼 수 있다.

  • PDF

Enhancement of Continuity and Accuracy by GPS/GLONASS Combination, and Software Development

  • Kang, Joon-Mook;Lee, Young-Wook;Park, Joung-Hyun
    • Korean Journal of Geomatics
    • /
    • v.2 no.1
    • /
    • pp.65-73
    • /
    • 2002
  • GPS in the United States and GLONASS of the old Soviet Union are used currently as satellite navigation systems. Plans are being made to use the Galileo satellite system in Europe, and these plans focus on a combined application of the satellite navigation systems. In this study, we examined the possibility of effective application of a combination of GPS/GLONASS in urban areas, where 3-dimensional positioning is impossible with GPS alone. We analyzed the 3-D coordinate deviation of a GLONASS satellite by integration interval and compared it with GLONASS satellite coordinates in precise ephmerides by transforming it into WGS84. We also programmed GPS/GLONASS, analyzed 3-D positioning accuracy by static surveying and kinematic surveying with Ashtech Z18 receivers and Legacy receivers, and then compared the results to those of GPS surveying. As a result, we are able to decide the integration interval for producing GLONASS satellite coordinates in navigation and geographical information and construct a GPS/GLONASS data processing system by developing a DGPS/DGLONASS positioning program. If more than four GLONASS satellites are observed, the accuracy of GPS/GLONASS is better than that of GPS positioning. As a result of kinematic surveying in a congested urban area with skyscrapers, we discovered that the GPS/LONASS combination is very effective.

  • PDF

GPS Satellite Orbit Prediction Based on Unscented Kalman Filter

  • Zheng, Zuoya;Chen, Yongqi;Xiushan, Lu;Zhixing, Du
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.191-196
    • /
    • 2006
  • In GPS Positioning, the error of satellite orbit will affect user's position accuracy directly, it is important to determine the satellite orbit precise. The real-time orbit is needed in kinematic GPS positioning, the precise GPS orbit from IGS would be delayed long time, so orbit prediction is key to real-time kinematic positioning. We analyze the GPS predicted ephemeris, on the base of comparison of EKF and UKF, a new orbit prediction method is put forward based on UKF in this paper, the result shows that UKF improves the orbit predicted precision and stability. It offers a new method for others satellites orbit determination as Galileo, and so on.

  • PDF

Experimental Implementation of Continuous GPS Data Processing Procedure on Near Real-Time Mode for High-Precision of Medium-Range Kinematic Positioning Applications (고정밀 중기선 동적측위 분야 응용을 위한 GPS 관측데이터 준실시간 연속 처리절차의 실험적 구현)

  • Lee, Hungkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.31-40
    • /
    • 2017
  • This paper deals with the high precision of GPS measurement reduction and its implementation on near real-time and kinematic mode for those applications requiring centimeter-level precision of the estimated coordinates, even if target stations are a few hundred kilometers away from their references. We designed the system architecture, data streaming and processing scheme. Intensive investigation was performed to determine the characteristics of the GPS medium-range functional model, IGS infrastructure and some exemplary systems. The designed system consisted of streaming and processing units; the former automatically collects GPS data through Ntrip and IGS ultra-rapid products by FTP connection, whereas the latter handles the reduction of GPS observables on static and kinematic mode to a time series of the target stations' 3D coordinates. The data streaming unit was realized by a DOS batch file, perl script and BKG's BNC program, whereas the processing unit was implemented by definition of a process control file of BPE. To assess the functionality and precision of the positional solutions, an experiment was carried out against a network comprising seven GPS stations with baselines ranging from a few hundred up to a thousand kilometers. The results confirmed that the function of the whole system properly operated as designed, with a precision better than ${\pm}1cm$ in each of the positional component with 95% confidence level.

Experimental Analysis of Kinematic Network-Based GPS Positioning Technique for River Bathymetric Survey

  • Lee, Hungkyu;Lee, Jae-One;Kim, Hyundo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.4
    • /
    • pp.221-233
    • /
    • 2016
  • This paper deals with performance assessment of the kinematic network-based GPS positioning technique with a view to using it for ellipsoidally referenced bathymetric surveys. To this end, two field trials were carried out on a land vehicle and a surveying vessel. Single-frequency GPS data acquired from these tests were processed by an in-house software which equips the network modeling algorithm with instantaneous ambiguity resolution procedure. The results reveals that ambiguity success rate based on the network model is mostly higher than 99.0%, which is superior to that of the single-baseline model. In addition, achievable accuracy of the technique was accessed at ${\pm}1.6cm$ and 2.7 cm with 95% confidence level in horizontal and vertical component respectively. From bathymetric survey at the West Nakdong River in Busan, Korea, 3-D coordinates of 2,011 points on its bed were computed by using GPS-derived coordinates, attitude, measured depth and geoid undulation. Note that their vertical coordinates are aligned to the geoid, the so-called orthometric height which is widely adopted in river engineering. Bathymetry was constructed by interpolating the coordinate set, and some discussion on its benefit was given at the end.

Experimental Results of Ship's Maneuvering Test Using GPS

  • Yoo, Yun-Ja;Hou, Dai-Jin;Hamada, Masaaki;Nakama, Yoshiyasu;Kouguchi, Nobuyoshi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.49-55
    • /
    • 2006
  • Kinematic GPS provides quite good accuracy of position in cm level. Though K-GPS assures high precision measurement in cm level on the basis of an appreciable distance between a station and an observational point, but it has measurable distance restriction within 20 km from a reference station on land. So it is necessary to make out a simple and low-cost method to obtain accurate positioning information without distance restriction. In this paper, the velocity integration method to get the precise velocity information of ship is explained. Next two experimental results (Zig-zag maneuvering test and Williamson turn) as the ship's maneuvering test and also the experimental results of leaving and entering port as slow speed ship's movement were shown. In these experimental results, ship's course, speed and position are compared with those obtained by kinematic-GPS, velocity integration method and dead reckoning position using Gyro-compass and Doppler-log.

  • PDF

GPS-Assisted Aerotriangulation (GPS를 이용한 항공삼각측량)

  • 김감래;김충평;윤종성
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.3
    • /
    • pp.283-292
    • /
    • 1999
  • Aerotriangulation for the large scale mapping(photo-scale l/5,000) was studied with the projection center determined by kinematic DGPS positioning. For the feasibility study, the accuracy and error was analyzed with the comparison between a projection center from the conventional model adjustment and the projection center determined by the kinematic DGPS positioning. Kinematic DGPS-supported Bundle adjustment was also performed. The accuracy of projection center, determined by L1 phase data observed within 30 km from base station, was stable, and the planimetric accuracy(RMS) is 13 cm and the vertical accuracy(RMS) is 15 cm with 4 ground control points, which satisfies the national standard of digital mapping. Thus, this study shows that GPS-assisted aerotriangulation can be used for economic digital mapping.

  • PDF

Accuracy Analysis of Kinematic SBAS Surveying (SBAS 이동측위 정확도 분석)

  • Kim, Hye In;Son, Eun Seong;Lee, Ho Seok;Kim, Hyun Ho;Park, Kwan Dong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.5
    • /
    • pp.493-504
    • /
    • 2008
  • Space-Based Augmentation System (SBAS), which is one of the GPS augmentation systems, is a Wide-Area Differential GPS that provides differential GPS corrections and integrity data. In this study, we did performance analysis of kinematic SBAS surveying by conducting Real-Time Kinematic (RTK), DGPS, standalone, and SBAS surveys. Considering static survey results as truth, 2-D Root Mean Square (RMS) error and 3-D RMS error were computed to evaluate the positioning accuracy of each survey method. As a result, the 3-D positioning error of RTK was 13.1cm, DGPS 126.0cm, standalone (L1/L2) 135.7cm, standalone (C/A) 428.9cm, and SBAS 109.2cm. The results showed that the positioning accuracy of SBAS was comparable to that of DGPS.