• 제목/요약/키워드: Kinematic Energy

검색결과 158건 처리시간 0.021초

유한요소해석과 다구찌방법을 이용한 에너지 저장형 의족용골의 설계에 관한 연구 (A Study on the Design of the Keel in the Energy Storing Prosthetic Foot Using the Finite Element Analysis and the Taguchi Method)

  • 이동희;장태성;이정주;윤용산
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.613-624
    • /
    • 2000
  • In this study, new design method of prosthetic foot was suggested which can evaluate the performance of prosthetic foot by implementing amputee's gait simulation using the finite element analysis. The basic shape of ESPF(Energy Storing Prosthetic Foot) was designed which is suitable for the below-knee amputee considering mechanical properties and kinematic properties. And, the performance evaluations were performed using the Taguchi method with orthogonal array L25. As a result, average main effect of factors for the ESPF's performance were calculated and then optimum condition of given shape was selected. Essential particulars for the performance evaluation from the simulation result were the quantity of external work needed in stance phase, the quantity of transferred energy from the ESPF through the knee, and the vertical displacement of knee at toe-off. Reasonable optimum condition was obtained from the using performance index. From this study, it was found that it is necessary for the design of ESPF to consider the geometrical data related to the magnitude of load on elastic material.

Fuel Qualities and Combustion Characteristics of Animal-Fats Biodiesel for Agricultural Hot Air Heaters

  • Kim, Youngjung;Park, Seokho;Kim, Youngjin;Kim, Chungkil
    • Journal of Biosystems Engineering
    • /
    • 제37권5호
    • /
    • pp.296-301
    • /
    • 2012
  • Purpose: Combustion and fuel qualities of the animal-fats biodiesel as a heating fuel for agricultural hot air heater were studied. Methods: Biodiesel (BD) was made from animal-fats by reacting with methanol and potassium hydroxide in the laboratory. The biodiesel made in the laboratory was tested for fuel and combustion qualities. Results: The kinematic viscosity and the calorific values of the biodiesels were measured. Kerosene based biodiesel, BD20 (K) showed 18 cSt at $-20^{\circ}C$. It seemed that BD100 was not suitable for a heating fuel under some temperature. As BD content increased, the calorific value decreased up to 40,000 J/g for BD100, while the calorific value of light oil was 45,567 J/g showing difference of 5,567 J/g, about 12% difference. Several different fuels including BD20 (biodiesel 20% + light oil 80%), BD50 (biodiesel 50% + light oil 50%), BD100 (biodiesel 100%), and light oil were tested for fuel combustion qualities for agricultural hot air heater, and their combustion performances were compared and analyzed. Flame dimensions of biodiesels and light oils were almost the same shape at the same combustion condition. Generally, the $CO_2$ amounts of BDs were greater than light oil. However, in this study the differences were minor, so there was no significant difference existed between the BDs combustion and light oil. Conclusions: It seemed that quality was good for heating oil for agricultural hot air heater because of showing no barriers for continuous combustion and proper exhaust gas temperature and $CO_2$ amount discharged. But, for fuel fluidity for higher BD content fuel could be a detrimental problem in situations where the outdoor temperature is lowered. As BD content increased, calorific value decreased up to 40,000 J/g for BD100. Calorific value difference between BD20 and light oil was about 1,360 J/g.

유연생산 시스템 구축을 위한 공작물 자동교환 유닛의 수평 이송 기구 설계에 관한 연구(파트 2) (A Study on the Design of Horizontal Traverse Units in an Automatic Object Changer Unit to Establish a Flexible Production System (Part 2))

  • 박후명;성재경;이용중;하만경
    • 한국기계가공학회지
    • /
    • 제7권2호
    • /
    • pp.52-59
    • /
    • 2008
  • The objective of this study is to develop an automatic object changer unit to improve processing problems existed in the conventional horizontal machining center. To achieve this goal, this study designed a horizontal transfer as the second project continued to the first project that designed a upward and downward traverse unit. A horizontal traverse unit shows a symmetric structure and consists of frame, which consists of four unit tools, motor and reducer, which are fixed at a frame, operation unit with pinions, first traverse unit, and second traverse unit. Constraint conditions based on the operation mechanism with these elements were configured and obtained following results after modeling a model for a traverse motor. In the kinematic expression of sliding motion with one degree of freedom, the sliding motion is constrained. Also, the rack 3 installed at a frame is used to configure possible kinematic constraint conditions of the rack 2 according to the rolling motion of the pinion 2 in the first traverse unit. In addition, the moment of inertia that is a type of kinetic energy in a converted horizontal traverse unit in the side of the reducer can be applied to introduce the moment of inertia of a converted horizontal traverse unit in the side of the reducer by using the sum of kinetic energy in the rack and pinion, which is a part of the horizontal traverse unit. Also, the equation of motion of the converted upward and downward traverse unit in the side of the motor using the equation of motion of the motor. Furthermore, the horizontal traverse unit predetermines the mass of the first and second traverse unit and applied load including the radius and reduction ratio of the pitch circle in the pinion 1 and applied load to the rack 2. Then, a proper motor can be determined using several parameters in the upward and downward traverse unit in order to verify such predetermined specifications. In future studies later this study, a simulation that verifies the results of the previous two stages of studies using a finite element method.

  • PDF

노인 건강증진용 신발의 운동과학적 효과분석 (The Scientific Analysis of Aged' Shoe for Health Promotion)

  • 진영완;곽이섭
    • 생명과학회지
    • /
    • 제21권9호
    • /
    • pp.1336-1345
    • /
    • 2011
  • 본 연구에서는 국내외 실버화와 일반적인 운동화에 대한 1차 운동기능학적 분석을 통하여 노인에게 가장 적합한 신발을 정하고 2차 운동생리학적 실험을 통해 체지방률변화, 운동강도에 따른 대사량의 변화 그리고 에너지 소비량의 변화를 분석하였다. 본 연구의 대상으로는 특별한 질병을 가지고 있지 않은 남자 어른들 20명을 대상으로 하였으며, 평균나이는 $62.78{\pm}4.32$세, 신장은 $170.89{\pm}3.56cm$ 그리고 몸무게는 $75.12{\pm}8.76kg$이었다. 실험 전 실험에 대한 충분한 설명을 하고 동의서를 받은 후 데이터를 수집하였다. 본 연구를 위하여 운동 기능학적 실험과 운동 생리학적 실험을 수행하였으며, 본 연구결과 걷기나 달리기 시 최초 발 뒤꿈치 접촉 시 발이 회내(pronation)되는 정도와 최대 회내가 되는 정도를 알아 본 결과 걷기속도가 가장 빠르게 나온 B형의 신발이 회내값($-2.3{\pm}1.05^{\circ}$)이 가장 크게 나타났으며 일반걷기용 신발에서 가장 작은 값($-1.5{\pm}0.49^{\circ}$)을 보여주고 있다. 또한 노인들의 일상생활에서 착용하는 건강증진용 신발을 대상으로 운동 생리학적 부분을 살펴보면 체지방율의 변화는 모든 그룹에서 감소는 하였으나, 통계적으로 유의한 차이가 나타나지 않았는데, 이는 체지방율의 변화를 가져오기 위해서 일시적인 운동이 아닌 규칙적이고 장기적인 운동이 필요할 것으로 사료되어지며, 노인들이 건강증진용 기능화를 장기적으로 착용하여 운동할 경우 체 지방율에 긍정적인 영향을 미칠 것으로 사료되어진다.

The Effect of Foot Landing Type on Lower-extremity Kinematics, Kinetics, and Energy Absorption during Single-leg Landing

  • Jeong, Jiyoung;Shin, Choongsoo S.
    • 한국운동역학회지
    • /
    • 제27권3호
    • /
    • pp.189-195
    • /
    • 2017
  • Objective: The aim of this study was to examine the effect of foot landing type (forefoot vs. rearfoot landing) on kinematics, kinetics, and energy absorption of hip, knee, and ankle joints. Method: Twenty-five healthy men performed single-leg landings with two different foot landing types: forefoot and rearfoot landing. A motion-capture system equipped with eight infrared cameras and a synchronized force plate embedded in the floor was used. Three-dimensional kinematic and kinetic parameters were compared using paired two-tailed Student's t-tests at a significance level of .05. Results: On initial contact, a greater knee flexion angle was shown during rearfoot landing (p < .001), but the lower knee flexion angle was found at peak vertical ground reaction force (GRF) (p < .001). On initial contact, ankles showed plantarflexion, inversion, and external rotation during forefoot landing, while dorsiflexion, eversion, and internal rotation were shown during rearfoot landing (p < .001, all). At peak vertical GRF, the knee extension moment and ankle plantarflexion moment were lower in rearfoot landing than in forefoot landing (p = .003 and p < .001, respectively). From initial contact to peak vertical GRF, the negative work of the hip, knee, and ankle joint was significantly reduced during rearfoot landing (p < .001, all). The contribution to the total work of the ankle joint was the greatest during forefoot landing, whereas the contribution to the total work of the hip joint was the greatest during rearfoot landing. Conclusion: These results suggest that the energy absorption strategy was changed during rearfoot landing compared with forefoot landing according to lower-extremity joint kinematics and kinetics.

Optimization of bioethanol production from nigerian sugarcane juice using factorial design

  • Suleiman, Bilyaminu;Abdulkareem, Saka A.;Afolabi, Emmanuel A.;Musa, Umaru;Mohammed, Ibrahim A.;Eyikanmi, Tope A.
    • Advances in Energy Research
    • /
    • 제4권1호
    • /
    • pp.69-86
    • /
    • 2016
  • The quest to reduce the level of overdependence on fossil fuel product and to provide all required information on proven existing alternatives for renewable energy has resulted into rapid growth of research globally to identify efficient alternative renewable energy sources and the process technologies that are sustainable and environmentally friendly. The present study is aimed at production and characterization of bioethanol produced from sugarcane juice using a $2^4$ factorial design investigating the effect of four parameters (reaction temperature, time, concentration of bacteria used and amount of substrate). The optimum bioethanol yield of 19.3% was achieved at a reaction temperature of $30^{\circ}C$, time of 72 hours, yeast concentration of 2 g and 300 g concentration of substrate (sugarcane juice). The result of statistical analysis of variance shows that the concentration of yeast had the highest effect of 7.325 and % contribution of 82.72% while the substrate concentration had the lowest effect and % contribution of -0.25 and 0.096% respectively. The bioethanol produced was then characterized for some fuel properties such as flash point, specific gravity, cloud point, pour point, sulphur content, acidity, density and kinematic viscosity. The results of bioethanol characterization conform to American society for testing and materials (ASTM) standard. Hence, sugarcane juice is a good and sustainable feedstock for bioethanol production in Nigeria owing relative abundance, cheap source of supply and available land for large scale production.

Study of an innovative two-stage control system: Chevron knee bracing & shear panel in series connection

  • Vosooq, Amir Koorosh;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제47권6호
    • /
    • pp.881-898
    • /
    • 2013
  • This paper describes analytical investigation into a new dual function system including a couple of shear links which are connected in series using chevron bracing capable to correlate its performance with magnitude of earthquakes. In this proposed system, called Chevron Knee-Vertical Link Beam braced system (CK-VLB), the inherent hysteretic damping of vertical link beam placed above chevron bracing is exclusively utilized to dissipate the energy of moderate earthquakes through web plastic shear distortion while the rest of the structural elements are in elastic range. Under strong earthquakes, plastic deformation of VLB will be halted via restraining it by Stopper Device (SD) and further imposed displacement subsequently causes yielding of the knee elements located at the bottom of chevron bracing to significantly increase the energy dissipation capacity level. In this paper first by studying the knee yielding mode, a suitable shape and angle for diagonal-knee bracing is proposed. Then finite elements models are developed. Monotonic and cyclic analyses have been conducted to compare dissipation capacities on three individual models of passive systems (CK-VLB, knee braced system and SPS system) by General-purpose finite element program ABAQUS in which a bilinear kinematic hardening model is incorporated to trace the material nonlinearity. Also quasi-static cyclic loading based on the guidelines presented in ATC-24 has been imposed to different models of CK-VLB with changing of vertical link beam section in order to find prime effectiveness on structural frames. Results show that CK-VLB system exhibits stable behavior and is capable of dissipating a significant amount of energy in two separate levels of lateral forces due to different probable earthquakes.

분할 벨트 조건을 이용한 무릎 관절 이상군의 보행 비대칭성 모사 (Reproduction of Walking Asymmetry in Knee Osteoarthritis with Split-Belt Conditions)

  • 이명현;박희원;박수경
    • 한국정밀공학회지
    • /
    • 제32권10호
    • /
    • pp.885-890
    • /
    • 2015
  • Walking on split-belt treadmill has been applied to study walking disabilities, such as osteoarthritis (OA), to show asymmetric walking characteristics. In this study, we compared asymmetric walking in OA patients with healthy subjects under split-belt conditions and examined the reproduction of walking asymmetry in OA. Seven OA patients were instructed to walk at four frequencies, while four healthy subjects walked on a treadmill with tied-belt and split-belt conditions. To compare walking asymmetries, kinetic and kinematic measurements were made using force-plates and motion capture cameras, and subsequently center of mass (CoM) velocity, mechanical work and potential energy were calculated. Horizontal velocity change during split-belt walking of healthy subjects was similar to OA patients. Difference of mechanical work during single support phase occurred due to fall of CoM in fast belt. OA walking asymmetry could be reproduced by reducing differences of belt speeds to prevent rapid fall of CoM.

오래 달리기 시 하지 근지구력에 따른 몸통의 3차원 각 변화 (Three Dimension Angle Change of the Trunk to the Muscular Endurance during a Prolonged Running)

  • 김태삼;이연종
    • 한국운동역학회지
    • /
    • 제17권2호
    • /
    • pp.61-73
    • /
    • 2007
  • The purpose of this study was to investigate the influence of the muscular endurance on the kinematic factors during a prolonged run. Subjects, 12 males, who were divided into three groups(lower group, general group, and in higher group) after measuring the lower limb's muscular endurance previously. They were asked toe run on the treadmill at 7.4km/h of speed. To analyze the kinematics parameters of the trunk during running, the ProReflex MCU Camera(Qualisys, Sweden) were used. All parameters were sampled from 5 minute, 40 minute, and 60 minute moments during running. An ANOVA with Repeated Measure was used to test the statistic significance between and within groups for all parameters determined with SPSS 11.0. Significance was defined as p<.05. The conclusions were as follows; There was significantly difference within(lapse of running time) groups in the take-off and minimum knee angle event of swing phase of the trunk flexion and extension. In conclusion, the muscular endurance affected on movement of the trunk during a prolonged run. In addition, it showed that there was significant difference in the energy consumption by lapse of running time. Therefore, it seems to be relationships between the muscular endurance and running efficiency.

Massless Links with External Forces and Bushing Effect for Multibody Dynamic Analysis

  • Sohn, Jeong-Hyun;Yoo, Wan-Suk;Hong, Keum-Shik;Kim, Kwang-Suk
    • Journal of Mechanical Science and Technology
    • /
    • 제16권6호
    • /
    • pp.810-818
    • /
    • 2002
  • When the contribution of lightweight components to the total energy of a system is small, tole inertia effects are sometimes ignored by replacing them to massless links. For example, a revolute-spherical massless link generates two kinematic constraint equations between adjacent bodies and allows four relative degrees of freedom. In this paper, to implement a massless link systematically in a computer program using the velocity transformation technique, the velocity transformation matrix of massless links is derived and numerically implemented. The velocity transformation matrix for a revolute-spherical massless link and a revolute-universal massless link are appeared as a 6$\times$4 matrix and a 6$\times$3 matrix, respectively. A massless link model in a suspension composite joint transmitting external forces is also developed and the numerical efficiency of the proposed model is compared to a conventional multibody model. For a massless link transmitting external forces, forces acting on links are resolved and transmitted to the attached points with a quasi-static assumption. Numerical examples are presented to verify the formulation.