• Title/Summary/Keyword: Kinematic Energy

Search Result 158, Processing Time 0.027 seconds

A new and simple HSDT for thermal stability analysis of FG sandwich plates

  • Menasria, Abderrahmane;Bouhadra, Abdelhakim;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.157-175
    • /
    • 2017
  • The novelty of this work is the use of a new displacement field that includes undetermined integral terms for analyzing thermal buckling response of functionally graded (FG) sandwich plates. The proposed kinematic uses only four variables, which is even less than the first shear deformation theory (FSDT) and the conventional higher shear deformation theories (HSDTs). The theory considers a trigonometric variation of transverse shear stress and verifies the traction free boundary conditions without employing the shear correction factors. Material properties of the sandwich plate faces are considered to be graded in the thickness direction according to a simple power-law variation in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are assumed as uniform, linear and non-linear temperature rises within the thickness direction. An energy based variational principle is employed to derive the governing equations as an eigenvalue problem. The validation of the present work is checked by comparing the obtained results the available ones in the literature. The influences of aspect and thickness ratios, material index, loading type, and sandwich plate type on the critical buckling are all discussed.

Interpretation of Ammonia Absorption Behavior in Water Turbulent Flow (물 난류에서의 암모니아 흡수 거동 해석)

  • Lee, Sang-Ryong;Park, Jin-Won
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.3
    • /
    • pp.75-80
    • /
    • 2019
  • The article is devoted to the interpretation of ammonia, one of the fine dust precursors, absorption behavior in water turbulent flow. The water flow was considered as a turbulent flow with Reynolds number more than $10^4$, because ammonia gas penetration depth was deeper at turbulent flow compared to laminar flow. For the interpretation, the dimensionless mass transfer governing-equation and the constant physical-properties at room temperature were used. The diffusivity of ammonia in water and the kinematic viscosity of water were $2{\times}10^{-9}m^2/s$ and $1{\times}10^{-6}m^2/s$, respectively. The concentration distribution of ammonia in water was estimated with respect to the position from the point where the water started to be exposed to ammonia. The quantitative distribution as a function of the mixing length was also acquired. The quantitative interpretation may provide the insight how much the turbulent flow was more efficient to remove ammonia rather than the laminar flow.

Simulation of Ammonia Reduction Effect by Hydroxylamine-oxidoreductase Enzyme Immobilized on the Surface of Water Pipe (수로관 표면 고정 히드록실아민-산화환원효소에 의한 암모니아 저감 효과 모사)

  • Lee, Sang-Ryong;Park, Jin-Won
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.35-41
    • /
    • 2020
  • The immobilization of the hydroxylamine-oxidoreductase on the water channel surface was performed to investigate the efficacy of ammonia removal in turbulent flow. The reaction by this enzyme proceeds rapidly by converting hydroxylamine into nitrous acid. For the analysis of the effect, a dimensionless mass transfer governing equation was established with the physical properties based on room temperature. The ammonia diffusion coefficient in water and the kinematic viscosity coefficient of water were 2.45×10-9 ㎡/s and 1×10-6 ㎡/s, respectively. The distribution of ammonia concentration in the water was calculated with respect to the distance from the point at which exposure to ammonia began. The quantitative distribution with respect to the mixing depth was also found. Such a quantitative analysis can provide insight into whether the enzyme immobilized on the water channel surface can be effectively used for ammonia removal.

A Study on Obtaining Tree Data from Green Spaces in Parks Using Unmanned Aerial Vehicle Images: Focusing on Mureung Park in Chuncheon

  • Lee, Do-Hyung;Kil, Sung-Ho;Lee, Su-Been
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.4
    • /
    • pp.441-450
    • /
    • 2021
  • Background and objective: The purpose of study is to analyze the three-dimensional (3D) structure by creating a 3D model for green spaces in a park using unmanned aerial vehicle (UAV) images. Methods: After producing a digital surface model (DSM) and a digital terrain model (DTM) using UAV images taken in Mureung Park in Chuncheon-si, we generated a digital tree height model (DHM). In addition, we used the mean shift algorithm to test the classification accuracy, and obtain accurate tree height and volume measures through field survey. Results: Most of the tree species planted in Mureung Park were Pinus koraiensis, followed by Pinus densiflora, and Zelkova serrata, and most of the shrubs planted were Rhododendron yedoense, followed by Buxus microphylla, and Spiraea prunifolia. The average height of trees measured at the site was 7.8 m, and the average height estimated by the model was 7.5 m, showing a difference of about 0.3 m. As a result of the t-test, there was no significant difference between height values of the field survey data and the model. The estimated green coverage and volume of the study site using the UAV were 5,019 m2 and 14,897 m3, respectively, and the green coverage and volume measured through the field survey were 6,339 m2 and 17,167 m3. It was analyzed that the green coverage showed a difference of about 21% and the volume showed a difference of about 13%. Conclusion: The UAV equipped with RTK (Real-Time Kinematic) and GNSS (Global Navigation Satellite System) modules used in this study could collect information on tree height, green coverage, and volume with relatively high accuracy within a short period of time. This could serve as an alternative to overcome the limitations of time and cost in previous field surveys using remote sensing techniques.

Comparison of soil erosion simulation between empirical and physics-based models

  • Yeon, Min Ho;Kim, Seong Won;Jung, Sung Ho;Lee, Gi Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.172-172
    • /
    • 2020
  • In recent years, soil erosion has come to be regarded as an essential environmental problem in human life. Soil erosion causes various on- and off-site problems such as ecosystem destruction, decreased agricultural productivity, increased riverbed deposition, and deterioration of water quality in streams. To solve these problems caused by soil erosion, it is necessary to quantify where, when, how much soil erosion occurs. Empirical erosion models such as the Universal Soil Loss Equation (USLE) family models have been widely used to make spatially distributed soil erosion vulnerability maps. Even if the models detect vulnerable sites relatively well by utilizing big data related to climate, geography, geology, land use, etc. within study domains, they do not adequately describe the physical process of soil erosion on the ground surface caused by rainfall or overland flow. In other words, such models remain powerful tools to distinguish erosion-prone areas at the macro scale but physics-based models are necessary to better analyze soil erosion and deposition and eroded particle transport. In this study, the physics-based Surface Soil Erosion Model (SSEM) was upgraded based on field survey information to produce sediment yield at the watershed scale. The modified model (hereafter MoSE) adopted new algorithms on rainfall kinematic energy and surface flow transport capacity to simulate soil erosion more reliably. For model validation, we applied the model to the Doam dam watershed in Gangwon-do and compared the simulation results with the USLE outputs. The results showed that the revised physics-based soil erosion model provided more improved and reliable simulation results than the USLE in terms of the spatial distribution of soil erosion and deposition.

  • PDF

Biomechanical and Physiological Comparative Analysis of the Single-Radius Knee Arthroplasty Systems and Multi-Radius Knee Arthroplasty Systems (무릎인공관절 단축범위(Single-Radius) 수술자와 다축범위(Multi-Radius) 수술자의 운동역 학적 및 운동생리학적 비교분석)

  • Jin, Young-Wan;Kwak, Yi-Sub
    • Journal of Life Science
    • /
    • v.18 no.11
    • /
    • pp.1532-1537
    • /
    • 2008
  • The purpose of this study was to investigate the effect of different arthroplasty designs on knee kinematic and lower limb muscular activation for up-stair and down-stair movement. 3-D video analysis of whole body and joint kinematics and EMG analysis of quadriceps and hamstrings were conducted. One-way ANOVAs were used for statistical analyses (p=0.05). The single-radius group exhibited more arthroplasty limb quadriceps EMG and hamstring coactivation EMG than the multi-radius group. Single-radius demonstrated more abduction angular displacement and reached peak abduction earlier than the multi-radius arthroplasty limb. The single- radius the percent body fat showed similar values in the Elderly, Single and Multi-radius group among the periods, however Control group was Lowered among the periods. Single-radius group limb also increased the quadriceps muscle activation level to produce more knee extension moment to compensate for the short quadriceps moment arm. Resting metabolic rate was significantly increased in control group in the period of LI. Energy expenditure was extremely increased in all groups except control group among the periods. We can say this is the exercise effects.

The Structure of Tidal Front in the Earstern Yellow Sea in the Summer of 1982 (1982년 하계 서해안 조석전선의 구조)

  • CHOO Hyo Sang;CHO Kyu Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.2
    • /
    • pp.83-91
    • /
    • 1984
  • The formation and structure of tidal front in the eastern part of the Yellow Sea were studied based on the oceanographic data compiled during the periods of $1982{\sim}1983$ and $1966{\sim}1970$. Well-defined fronts occurring in the Yellow Sea in summer mark the boundary between the stratified and vertically mixed regimes. The occurrence of vertically mixed regimes may be interpreted in terms of available turbulent kinematic energy of tidal currents. The tidal frontal regions were determined by horizontal gradients of temperature, salinity and dissolved oxygen, and were verified by water colour and transparency. In summer the tidal fronts were found at depths of $15{\sim}25m$ at about 20 miles from the shore. Potential energy of vortical stratification in the tidal frontal region was 10 $Joule/m^3$. The stratification parameter in the frontal region computed from the numerical tidal model was $S_p=1.0.$ Tidal front is formed in regions with $S_p=1-1.5,$ if surface heat flux are constant. Waters in the stratified region have the layer structures of wind-mixed surface layer, thermocline and tidal-mixed bottom layer. In the vertically mixed region, however, sea water is nearly homogeneous. in winter no distinctive tidal front was seen.

  • PDF

A Study on the Estimation of Discharge in Unsteady Condition by Using the Entropy Concept (엔트로피 개념에 의한 부정류 유량 산정에 관한 연구)

  • Choo, Tai Ho;Chae, Soo Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6159-6166
    • /
    • 2012
  • A discharge measurement is difficult in flood season which is especially important in the water resources field and the continuous discharge measurement for all rivers is impossible on the present system. So, the stage-discharge curve has been used for a long time to produce discharge data of rivers. However, there has been problems from a reliability angle due to the fact that this method uses only stage-discharge relationship, although the stage-discharge curve has the convenience. Therefore, a new mean velocity equation was derived by using Chiu's 2D velocity formula of the entropy concept in this paper. The derived equation reflected hydraulic characteristics such as the depth, gravity acceleration, hydraulic radius, energy slope, kinematic coefficient of viscosity, etc. and estimated also a maximum velocity. In addition, this method verified the relationship between a mean and maximum velocity and estimates an equilibrium state ${\phi}(M)$ well presenting properties of a river cross section as the results. The mean velocity was estimated by using the equilibrium state ${\phi}(M)$, and then the discharge was estimated. To prove this equation to be accurate, the comparison between the measured and estimated discharge is conducted by using the measured laboratory data in the unsteady condition flow showing loop state and the results are consistent. If this study is constantly carried out by using various laboratory and river data, this method will be widely utilized in water resources field.