DOI QR코드

DOI QR Code

Interpretation of Ammonia Absorption Behavior in Water Turbulent Flow

물 난류에서의 암모니아 흡수 거동 해석

  • Lee, Sang-Ryong (Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University) ;
  • Park, Jin-Won (Department of Chemical and Biomolecular Engineering, College of Energy and Biotechnology, Seoul National University of Science and Technology)
  • 이상룡 (동국대학교 바이오시스템대학 바이오환경과학과) ;
  • 박진원 (서울과학기술대학교 에너지바이오대학 화공생명공학과)
  • Received : 2019.08.05
  • Accepted : 2019.09.16
  • Published : 2019.09.30

Abstract

The article is devoted to the interpretation of ammonia, one of the fine dust precursors, absorption behavior in water turbulent flow. The water flow was considered as a turbulent flow with Reynolds number more than $10^4$, because ammonia gas penetration depth was deeper at turbulent flow compared to laminar flow. For the interpretation, the dimensionless mass transfer governing-equation and the constant physical-properties at room temperature were used. The diffusivity of ammonia in water and the kinematic viscosity of water were $2{\times}10^{-9}m^2/s$ and $1{\times}10^{-6}m^2/s$, respectively. The concentration distribution of ammonia in water was estimated with respect to the position from the point where the water started to be exposed to ammonia. The quantitative distribution as a function of the mixing length was also acquired. The quantitative interpretation may provide the insight how much the turbulent flow was more efficient to remove ammonia rather than the laminar flow.

본 연구는 난류로 흐르는 물에서 미세먼지 전구체 중 하나인 암모니아가 흡수되는 거동을 해석하였다. 물의 흐름이 층류보다 난류인 조건에서 암모니아의 침투 깊이가 더 깊으므로 레이놀즈 수가 $10^4$보다 큰 난류 조건이 고려된다. 거동 해석을 위하여, 무차원 물질전달 지배방정식과 상온 기준의 일정한 물성치들이 사용되었다. 물에서의 암모니아 확산계수와 물의 동점도계수는 각각 $2.45{\times}10^{-9}m^2/s$$1{\times}10^{-6}m^2/s$이었다. 물에서의 암모니아 농도 분포는 암모니아에 노출되기 시작하는 지점으로부터의 위치에 대하여 산출되었다. 혼합 깊이에 따른 정량적인 분포 또한 도출되었다. 이와 같은 정량적인 해석은 난류로 흐르는 물이 층류로 흐르는 것과 비교하여 얼마나 더욱 효율적으로 암모니아를 제거할 수 있는지에 대한 통찰력을 제시할 수 있다.

Keywords

References

  1. Irwin, J. G., Williams, M. L., "Acid rain: Chemistry and transport", Environmental Pollution, 50(1-2), pp. 29-59. (1988). https://doi.org/10.1016/0269-7491(88)90184-4
  2. Sorensen, L. L., Granby, K., Nielsen, H. and Asman, W. A. H., "Diffusion scrubber technique used for measurements of atmospheric ammonia, Atmospheric Environment", 28, pp. 3637-3645. (1994). https://doi.org/10.1016/1352-2310(94)00189-R
  3. Bjoerkman, E. and Sjostrom, K., "Decomposition of ammonia over dolomite and related-compounds", Energy & Fuels, 5, pp. 753-760. (1991). https://doi.org/10.1021/ef00029a023
  4. Lindstedt, R. P., Lockwood, F. C. and Selim, M. A., "A detailed kinetic study of ammonia oxidation", Combustion Sci & Technol., 108, pp. 231-254. (1995). https://doi.org/10.1080/00102209508960400
  5. Bird, R. B., Stewart, W. E. and Lightfoot, E. N., Transport phenomena, John Wiley and Sons, Inc., New York, pp. 657-667. (2006).
  6. Hanna, O. T. and Sandall, O. C., Computational methods in chemical engineering, Prentice Hall International Inc., New Jersey, pp. 359-369. (1995).
  7. Wilke, C. R. and Chang, P., "Correlation of diffusion coefficients in dilute solutions", AIChE Journal, 1, pp. 264-270. (1955). https://doi.org/10.1002/aic.690010222
  8. Lin, C. S., Moulton, R. W. and Putnam, G. L., "Mass Transfer between Solid Wall and Fluid Streams. Mechanism and Eddy Distribution Relationships in Turbulent Flow", Ind. Eng. Chem., 45, pp. 636-640. (1953). https://doi.org/10.1021/ie50519a048
  9. Higbie, R., "The Rate of Absorption of a Pure Gas into a Still Liquid during Short Periods of Exposure", Transactions of the AIChE, 31, pp. 365-389. (1935).