• 제목/요약/키워드: Kinematic Data

검색결과 714건 처리시간 0.033초

석문일월무예 음양보법의 숙련성에 따른 보행 패턴의 하지 운동학 및 운동역학적 특성 (A Study of Motor Expertise about Kinematic and Kinetic Characteristics of Lower Extremity in the Seokmun Ilwol Martial Art Yin-yang Bo Gait Pattern)

  • 박복희;김기형
    • 한국운동역학회지
    • /
    • 제24권3호
    • /
    • pp.239-248
    • /
    • 2014
  • The purpose of this study was to quantify kinematic and kinetic characteristics of Yin-yang Bo gait according to their motor expertise, one of the Seokmun Ilwol martial art gait patterns. Yin-yang Bo gait pattern shows initial forefoot contact instead of heel contact, and increased time of stance phase time, internal-external rotation of ankle-knee-hip joints and pelvic. It aims to produce and store the more energy through continuous homeostasis of center of gravity (COG) and performance of stretch-shortening cycle. Some of these characteristics also were similar to the gait modification strategies for reducing knee adduction moment such as toe-out progression, medial thrust, internal rotation of hip joint. To identify the characteristics, four factors of expert Yin-yang Bo gait performance group were compared to that of none expert group; 1) angles of COG displacement and rotation 2) distal joint pre-rotation in internal-external rotation of ankle-knee-hip joints and pelvic, 3) invariability pelvic potential and pelvic segment total energy 4) knee abduction moment. Six healthy(three male) subjects participated in the experiment to perform Yin-yang gait pattern. Three-dimensional and force plate data were collected. Kinematic and kinetic data were compared between two groups using t-tests. Results showed that 1) the peak point of COG internal rotation angle was reduced in expert group, 2) kneeexternal and hip joint -internal and pelvic rotation angle peak frames were more near points in expert group.

여자 창던지기 운동학적 요인의 일관성 평가 (Evaluation of Consistency on Kinematic Factors in Women Javelin Throw)

  • 홍순모;이영선
    • 한국운동역학회지
    • /
    • 제17권4호
    • /
    • pp.65-71
    • /
    • 2007
  • The purpose of this study was to investigate variability of kinematic factors affecting the record in women's javelin throwing. For this study, 8 female-javelin thrower participated in this experiment. The three digital video cameras (Sony, 120x) were used to record motions. Kwon3D 2.1 was used to process data and they were analyzed with Excell for factors. The sampling rate of a camera was 60Hz and shutter speed of a camera was 1/1000sec. The coordinate data were filtered using a fourth-order Butterworth low pass filtering with an estimated optimum cut-off frequency of 6Hz. The results were as follows: 1. From cross step to landing of delivery, the average velocities of CoM of non-dominant athletes were greater than dominant athletes and those of CoM of non-dominant athletes less than dominant athletes, but at release dominant athletes had a lower average velocity and a variability than non-dominant athletes. 2. From cross step to landing of delivery, the average throwing velocities and variabilities of a javelin of dominant athletes were greater than dominant athletes, but at release, dominant athletes had a higher velocity than dominant athletes and had a equal variability. 3. At every events, a forward or backward angles and variabilities of non-dominant athletes were greater than dominant athletes. 4. From cross step to landing of delivery, dominant athletes' elbow average angles were greater than non-dominant athletes and the variabilities of latter less than non-dominant athletes, but at release dominant athletes' variabilities were smaller than non-dominant athletes. 5. At landing of delivery, dominant athletes' knee average angles and variabilities of a supporting foot were a greater than non-dominant athletes, and at release, dominant athletes' knee average angles was a greater but variabilities less than non-dominant athletes. In conclusion, the dominant threw javelins fast while having stable postures and the range of elbow's angle large.

GPS 상시관측소 동적 좌표추정을 위한 중기선해석 정확도의 실험적 분석 (Experimental Assessment on Accuracy of Kinematic Coordinate Estimation for CORS by GPS Medium-range Baseline Processing Technique)

  • 조인수;이흥규
    • 한국측량학회지
    • /
    • 제34권1호
    • /
    • pp.79-90
    • /
    • 2016
  • 본 논문에서는 지진 등으로 인해 발생하는 절대 지각변위 추정에 GPS 상시관측망의 동적기선해석 기법의 적용 가능성을 실험을 통해 정확도와 정밀도 측면에서 분석하였다. 국내 관측소의 절대좌표 추정을 위해 국외 관측소가 데이터처리에 포함 할 필요가 있어 실험 네트워크는 관측점 사이 거리가 수 백 ∼ 약 1,000km에 달하는 중기선으로 구성하였다. 따라서 대상 관측점의 동적 거동특성을 매개변수 추정단계에 반영하는 일련의 절차를 적용하여 GPS 동적 중기선해석 실험을 수행하였다. 이를 통하여 GPS 동적 중기선해석을 통해 센티미터 수준의 정확도와 그 이상의 정밀도로 GPS 상시관측소의 절대좌표를 동적모드로 추정할 수 있음을 확인하였다. 또한 본 논문은 위성궤도력, 관측데이터양 그리고 동적좌표 추정의 초기좌표 구속범위와 같은 기선해석 조건들이 동적좌표 추정 정확도와 정밀도에 미치는 영향을 분석하고 그 결과를 요약하고 있다.

Effects of the Patellar Tendon Strap on Kinematics, Kinetic Data and Muscle Activity During Gait in Patients With Chronic Knee Osteoarthritis

  • Eun-Ji Lee;Ki-Song Kim;Young-In Hwang
    • 한국전문물리치료학회지
    • /
    • 제30권2호
    • /
    • pp.110-119
    • /
    • 2023
  • Background: Osteoarthritis is a common condition with an increasing prevalence and is a common cause of disability. Osteoarthritic pain decreases the quality of life, and simple gait training is used to alleviate it. Knee osteoarthritis limits joint motion in the sagittal and lateral directions. Although many recent studies have activated orthotic research to increase knee joint stabilization, no study has used patellar tendon straps to treat knee osteoarthritis. Objects: This study aimed to determine the effects of patellar tendon straps on kinematic, mechanical, and electromyographic activation in patients with knee osteoarthritis. Methods: Patients with knee osteoarthritis were selected. After creating the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), leg length difference, Q-angle, and thumb side flexion angle of the foot were measured. Kinematic, kinetic, and muscle activation data during walking before and after wearing the orthosis were viewed. Results: After wearing the patellar tendon straps, hip adduction from the terminal stance phase, knee flexion from the terminal swing phase, and ankle plantar flexion angle increased during the pre-swing and initial swing phases. The cadence of spatiotemporal parameters and velocity increased, and step time, stride time, and foot force duration decreased. Conclusion: Based on the results of this study, the increase in plantar flexion after strap wearing is inferred by an increase due to neurological mechanisms, and adduction at the hip joint is inferred by an increase in adduction due to increased velocity. The increase in cadence and velocity and the decrease in gait speed and foot pressure duration may be due to joint stabilization. It can be inferred that joint stabilization is increased by wearing knee straps. Thus, wearing a patellar tendon strap during gait in patients with knee osteoarthritis influences kinematic changes in the sagittal plane of the joint.

A Motion Editing System for Handling Autonomous Creation of Character Animation

  • Lee, Ji-Hong;Kim, In-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.117.1-117
    • /
    • 2001
  • A motion handling technique that transforms existing animation motion data to a mathematically well-defined form. The transformed data can be utilized in any kind of autonomous motion creation process that handles such cases as changed environment, structure (kinematic / dynamic) modification, or changed constraints. To overcome the computational burden of traditional spacetime optimization, we divide full motion data frame into several parts, and we applied the transformation technique to each part using an optimizing tool(CFSQP). To show Ire feasibility of the proposed method, a comparison study results with traditional technique is included.

  • PDF

대형구조물 모니터링을 위한 high-rate GPS 자료처리 (A High-rate GPS Data Processing for Large-scale Structure Monitoring)

  • 배태석
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2010년 춘계학술발표회 논문집
    • /
    • pp.181-182
    • /
    • 2010
  • For real-time displacement monitoring of large-scale structures, the high-rate (>1 Hz) GPS data processing is necessary, which is not possible even for the scientific GPS data processing softwares. Since the baseline is generally very short in this case, most of the atmospheric effects are removed, resulting in the unknowns of position and integer ambiguity. The number of unknowns in real-time kinematic GPS positioning makes the positioning impossible with usual approach, thus two-step approach is tested in this study.

  • PDF

Kinematic Method of Camera System for Tracking of a Moving Object

  • Jin, Tae-Seok
    • Journal of information and communication convergence engineering
    • /
    • 제8권2호
    • /
    • pp.145-149
    • /
    • 2010
  • In this paper, we propose a kinematic approach to estimating the real-time moving object. A new scheme for a mobile robot to track and capture a moving object using images of a camera is proposed. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the active camera. Uncertainties in the position estimation caused by the point-object assumption are compensated using the Kalman filter. To generate the shortest time path to capture the moving object, the linear and angular velocities are estimated and utilized. The experimental results of tracking and capturing of the target object with the mobile robot are presented.

순간중심을 이용한 평면 3 자유도 자동차 모델의 롤 운동 해석 (Roll Motion Analysis of a 3 D.O.F. Planar Car Model using Instantaneous Centers)

  • 이재길;심재경
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.92-98
    • /
    • 2006
  • In this paper, a planar car model with 3 degrees of freedom was analyzed using the concept of the roll center. To avoid ambiguity, force components which require experimental data were excluded. Only kinematic approach was used to find the position and orientation of the vehicle body and the position of the roll center. The roll center was found by the pole with infinitesimal movement and Kennedy-Aronhold theorem. Centrodes, which are the loci of instantaneous centers of planar motion, were constructed with analyzed results to show characteristics of vehicle body motion. To verify the presented analysis method in this paper, the locus of the roll center and the motion of a 3 D.O.F. planar car model were compared with those of the 1 D.O.F. model.

ELASTOKINEMATIC ANALYSIS OF A SUSPENSION SYSTEM WITH LINEAR RECURSIVE FORMULA

  • KANG J. S.
    • International Journal of Automotive Technology
    • /
    • 제6권4호
    • /
    • pp.375-381
    • /
    • 2005
  • This paper presents linear algebraic equations in the form of recursive formula to compute elastokinematic characteristics of a suspension system. Conventional methods of elastokinematic analysis are based on nonlinear kinematic constrant equations and force equilibrium equations for constrained mechanical systems, which require complicated and time-consuming implicit computing methods to obtain the solution. The proposed linearized elastokinematic equations in the form of recursive formula are derived based on the assumption that the displacements of elastokinematic behavior of a constrained mechanical system under external forces are very small. The equations can be easily computerized in codes, and have the advantage of sharing the input data of existing general multi body dynamic analysis codes. The equations can be applied to any form of suspension once the type of kinematic joints and elastic components are identified. The validity of the method has been proved through the comparison of the results from established elastokinematic analysis software. Error estimation and analysis due to piecewise linear assumption are also discussed.

Study on Optimal Calibration Configurations of a Parallel Type Machining Center Under a Single Planar Constraint

  • Lee, Min-Ki;Kim, Tae-Sung;Park, Kun-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1886-1893
    • /
    • 2003
  • This paper examines the parameter observability of a calibration system that consrains a mobile platform to a planar table to take the calibration data. To improve the parameter observability, we find the optimal configurations providing the calibration with maximum contribution. The QR-decomposition is used to compute the optimal configurations that maximize the linear independence of rows of an observation matrix. The calibration system is applied to the parallel type manipulator constructed for a machining center. The calibration results show that all the necessary kinematic parameters assigned in a Stewart-Gough platform are identifiable and convergent to desirable accuracy.