• Title/Summary/Keyword: Kinematic Constraint

Search Result 112, Processing Time 0.026 seconds

Kinematic Calibration Method for Redundantly Actuated Parallel Mechanisms (여유구동 병렬기구의 기구학적 보정)

  • 정재일;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.355-360
    • /
    • 2002
  • To calibrate a non-redundantly actuated parallel mechanism, one can find actual kinematic parameters by means of geometrical constraint of the mechanism's kinematic structure and measurement values. However, the calibration algorithm for a non-redundant case does not apply fur a redundantly actuated parallel mechanism, because the angle error of the actuating joint varies with position and the geometrical constraint fails to be consistent. Such change of joint angle error comes from constraint torque variation with each kinematic pose (meaning position and orientation). To calibrate a redundant parallel mechanism, one therefore has to consider constraint torque equilibrium and the relationship of constraint torque to torsional deflection, in addition to geometric constraint. In this paper, we develop the calibration algorithm fir a redundantly actuated parallel mechanism using these three relationships, and formulate cost functions for an optimization algorithm. As a case study, we executed the calibration of a 2-DOF parallel mechanism using the developed algorithm. Coordinate values of tool plate were measured using a laser ball bar and the actual kinematic parameters were identified with a new cost function of the optimization algorithm. Experimental results showed that the accuracy of the tool plate improved by 82% after kinematic calibration in a redundant actuation case.

  • PDF

Constraint Operator for the Kinematic Calibration of a Parallel Mechanism

  • Lee, Min-Ki;Kim, Tae-Sung;Park, Kun-Woo;Kwon, Sung-Ha
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.23-31
    • /
    • 2003
  • This paper introduces a constraint operator for the kinematic calibration of a parallel mechanism. By adopting the concept of a constraint operator, the movement between two poses is constrained. When the constrained movements are satisfied, the active joint displacements are taken and inputted into the kinematic model to compute the theoretical movements. A cost function is derived by the errors between the theoretical movement and the actual movement. The parameters that minimize the cost function are estimated and substituted into the kinematic model for a kinematic calibration. A single constraint plane is employed as a mechanical fixture to constrain the movement, and three digital indicators are used as the sensing devices to determine whether the constrained movement is satisfied. This calibration system represents an effective, low cost and feasible technique for a parallel mechanism. A calibration algorithm is developed with a constraint operator and implemented on a parallel manipulator constructed for a machining center tool.

Collision prediction and detection in a dynamic environment (동적 환경하에서의 충돌 예측 및 감지)

  • 한인환;양우석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.309-314
    • /
    • 1992
  • Many dynamic mechanical systems, such as parts-feeders, walking machines, and percussive power tools, are described by equations of motion which are discontinuous. The discontinuities result from kinematic constraint changes which are difficult to foresee, especially in presence of impact. A simulation algorithm for these types of systems must be able to algorithmically predict and detect the kinematic constraint changes without any prior knowledge of the system's motion. This paper presents a rule-based approach to the prediction and detection of kinematic constraint changes between bodies with arc and line boundaries. The developed algorithm's ability to accurately and automatically detect the unpredicted changes of kinematic constraints is demonstrated with a numerical example.

  • PDF

A Study on the Subtask Performance Using Measure Constraint Locus for a Redundant Robot (여유자유도 로봇에 있어서 성능지수 제한궤적을 이용한 부작업의 성능에 관한 연구)

  • 최병욱;원종화;정명진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.10
    • /
    • pp.761-770
    • /
    • 1991
  • This paper suggests a measure constraint locus for characterization of the performance of a subtask for a redundant robot. The measure constraint locus are the loci of points satisfying the necessary constraint for optimality of measure in the joint configuration space. To uniquely obtain an inverse kinematic solution, one must consider both measure constraint locus and self-motion manifolds which are set of homogeneous solutions. Using measure constraint locus for maniqulability measure, the invertible workspace without singularities and the topological property of the configuration space for linding equilibrium configurations are analyzed. We discuss some limitations based on the topological arguments of measure constraint locus, of the inverse kinematic algorithm for a cyclic task. And the inverse kinematic algorithm using global maxima on self-motion manifolds is proposed and its property is studied.

  • PDF

Estimation Method for Kinematic Constraint of Unknown Object by Active Sensing (미지 물체의 구속상태에 관한 실시간 추정방법)

  • Hwang Chang-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.188-200
    • /
    • 2005
  • Control of a multi-fingered robotic hand is usually based on the theoretical analysis for kinematics and dynamics of fingers and of object. However, the implementation of such analyses to robotic hands is difficult because of errors and uncertainties in the real situations. This article presents the control method for estimating the kinematic constraint of an unknown object by active sensing. The experimental system has a two-fingered robotic hand suspended vertically for manipulation in the vertical plane. The fingers with three degrees-of-freedom are driven by wires directly connected to voice-coil motors without reduction gears. The fingers are equipped with three-axis force sensors and with dynamic tactile sensors that detect slippage between the fingertip surfaces and the object. In order to make an accurate estimation for the kinematic constraint of the unknown object, i.e. the constraint direction and the constraint center, four kinds of the active sensing and feedback control algorithm were developed: two position-based algorithms and two force-based algorithms. Furthermore, the compound and effective algorithm was also developed by combining two algorithms. Force sensors are mainly used to adapt errors and uncertainties encountered during the constraint estimation. Several experimental results involving the motion of lifting a finger off an unknown object are presented.

A Study on the Kinematic and Dynamic Analyses of Spatial Complex Kinematic Chain (공간 복합기구연쇄의 기구학 및 동역학 해석에 관한 연구)

  • 김창부;김효식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2543-2554
    • /
    • 1993
  • In this paper, the kinematic and dynamic analyses of spatial complex kinematic chain are studied. Through the new method both using the set of identification numbers and applying the DenavitHartenberg link representation method to the spatial complex kinematic chain, the kinematic configuration of the chain is represented. Some link in the part of closed chain being fictitiously cutted, the complex kinematic chain is transformed to the branched chain. The kinematic constraint equations are derived from the constraint conditions which the cutted sections of the link have to satisfy. And the joint variables being partitioned in the independent joint variables and the dependent joint variables, the dependent variables are calculated from the independent variables by using the Newton-Raphson iterative method and the pseudoinverse matrix. The equations of motion are derived under the independent joint variables by using the principle of virtual work. Algorithms for dynamic analysis are presented and simulations are done to verify accuracy and efficiency of the algorithms.

A new kinematic formulation of closed-chain mechanisms with redundancy and its applications to kinematic analysis

  • Kim, Sungbok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.396-399
    • /
    • 1995
  • This paper presents a new formulation of the kinematics of closed-chain mechanisms and its applications to obtaining the kinematic solutions and analyzing the singularities. Closed-chain mechanisms under consideration may have the redundancy in the number of joints. A closed-chain mechanism can be treated as the parallel connection of two open-chains with respect to a point of interest. The kinematics of a closed-chain mechanism is then obtained by imposing the kinematic constraints of the closed-chain on the kinematics of the two open-chains. First, we formulate the kinematics of a closed-chain mechanism using the kinematic constraint between the controllable active joints and the rest of joints, instead of the kinematic constraint between the two open-chains. The kinematic formulation presented in this paper is valid for closed-chain mechanisms with and without the redundancy. Next, based on the derived kinematics of a closed-chain mechanism, we provide the kinematic solutions which are more physically meaningful and less sensitive to numerical instability, and also suggest an effective way to analyze the singularities. Finally, the computational cost associated with the kinematic formulation is analyzed.

  • PDF

Kinematic GPS Positioning with Baseline Length Constraint Using the Maximum Possibility Estimation Method

  • Wang, Xinzhou;Xu, Chengquan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.247-250
    • /
    • 2006
  • Based on the possibility theory and the fuzzy set, the Maximum Possibility Estimation method and its applications in kinematic GPS positioning are presented in this paper. Firstly, the principle and the optimal criterion of the Maximum Possibility Estimation method are explained. Secondly, the kinematic GPS positioning model of single epoch single frequency with baseline length constraint is developed. Then, the authors introduce the artificial immune algorithm and use this algorithm to search the global optimum of the Maximum Possibility Estimation model. The results of some examples show that the method is efficient for kinematic GPS positioning.

  • PDF

Sensitivity Analysis Using a Symbolic Computation Technique and Optimal Design of Suspension Hard Points (기호계산을 이용한 현가장치의 민감도 해석 및 설계점의 최적 설계)

  • Chun, Hung-Ho;Tak, Tae-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.26-36
    • /
    • 1999
  • A general procedure for determining the optimum location of suspension hard points with respect to kinematic design parametes is presented. Suspensions are modeled as connection of rigid bodies by ideal kinematic joints. Constraint equations of the kinematic joints are expressed in terms of the generalized coordinates and hard points. By directly differentiating the constraint equations with respect to the hard points, kinematic sencitivity equations are obtained. In order to cope with algebraic complexity associated with the differentiation process, a symbolic computation technique is used. A performance index is defined in terms of static design parameters such as camber, caster, toe, ect.. Gradient of the performance index can be analytically computed from the kinematic sensitivity equations. Optimization results show the effectiveness and validity of the procedure, which is applicable to any type of suspension if its kinematic configurations are given.

  • PDF