• Title/Summary/Keyword: Kinect Device

Search Result 36, Processing Time 0.029 seconds

Motion correction captured by Kinect based on synchronized motion database (동기화된 동작 데이터베이스를 활용한 Kinect 포착 동작의 보정 기술)

  • Park, Sang Il
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.2
    • /
    • pp.41-47
    • /
    • 2017
  • In this paper, we present a method for data-driven correction of the noisy motion data captured from a low-end RGB-D camera such as the Kinect device. For this purpose, our key idea is to construct a synchronized motion database captured with Kinect and additional specialized motion capture device simultaneously, so that the database contains a set of erroneous poses from Kinect and their corresponding correct poses from the mocap device together. In runtime, given motion captured data from Kinect, we search the similar K candidate Kinect poses from the database, and synthesize a new motion only by using their corresponding poses from the mocap device. We present how to build such motion database effectively, and provide a method for querying and searching a desired motion from the database. We also adapt the laze learning framework to synthesize the corrected poses from the querying results.

A On-site Monitoring Device of Work-related Musculoskeletal Disorder Risk Based on 3D-Camera (3D 카메라 기반 직업성 근골격계 부담 작업 모니터링 장치)

  • Loh, Byoung Gook
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.110-116
    • /
    • 2015
  • A 3D camera-based on-site work-related musculoskeletal disorder risk assessment(WMDs) tool has been developed. The device consists of Kinect a 3D camera manufactured by Microsoft, a servo-motor, and a mobile robot. To complement inherent narrow field of view(FOV) of Kinect, Kinect is rotated according to PID servo-control algorithm by a servo-motor attached underneath, to track movement of a subject, producing skeleton-based motion data. With servo-control, full 360 degrees tracking of a test subject is possible by single Kinect. It was found from experimental tests that the proposed device can be successfully employed for on-site WMDs risk assessing tool.

Marker-less Calibration of Multiple Kinect Devices for 3D Environment Reconstruction (3차원 환경 복원을 위한 다중 키넥트의 마커리스 캘리브레이션)

  • Lee, Suwon
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1142-1148
    • /
    • 2019
  • Reconstruction of the three-dimensional (3D) environment is a key aspect of augmented reality and augmented virtuality, which utilize and incorporate a user's surroundings. Such reconstruction can be easily realized by employing a Kinect device. However, multiple Kinect devices are required for enhancing the reconstruction density and for spatial expansion. While employing multiple Kinect devices, they must be calibrated with respect to each other in advance, and a marker is often used for this purpose. However, a marker needs to be placed at each calibration, and the result of marker detection significantly affects the calibration accuracy. Therefore, a user-friendly, efficient, accurate, and marker-less method for calibrating multiple Kinect devices is proposed in this study. The proposed method includes a joint tracking algorithm for approximate calibration, and the obtained result is further refined by applying the iterative closest point algorithm. Experimental results indicate that the proposed method is a convenient alternative to conventional marker-based methods for calibrating multiple Kinect devices. Hence, the proposed method can be incorporated in various applications of augmented reality and augmented virtuality that require 3D environment reconstruction by employing multiple Kinect devices.

Real-time monitoring system with Kinect v2 using notifications on mobile devices (Kinect V2를 이용한 모바일 장치 실시간 알림 모니터링 시스템)

  • Eric, Niyonsaba;Jang, Jong Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.277-280
    • /
    • 2016
  • Real-time remote monitoring system has an important value in many surveillance situations. It allows someone to be informed of what is happening in his monitoring locations. Kinect v2 is a new kind of camera which gives computers eyes and can generate different data such as color and depth images, audio input and skeletal data. In this paper, using Kinect v2 sensor with its depth image, we present a monitoring system in a space covered by Kinect. Therefore, based on space covered by Kinect camera, we define a target area to monitor using depth range by setting minimum and maximum distances. With computer vision library (Emgu CV), if there is an object tracked in the target space, kinect camera captures the whole image color and sends it in database and user gets at the same time a notification on his mobile device wherever he is with internet access.

  • PDF

Accuracy Comparison of Spatiotemporal Gait Variables Measured by the Microsoft Kinect 2 Sensor Directed Toward and Oblique to the Movement Direction (정면과 측면에 위치시킨 마이크로 소프트 키넥트 2로 측정한 보행 시공간 변인 정확성 비교)

  • Hwang, Jisun;Kim, Eun-jin;Hwang, Seonhong
    • Physical Therapy Korea
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Background: The Microsoft Kinect which is a low-cost gaming device has been studied as a promise clinical gait analysis tool having satisfactory reliability and validity. However, its accuracy is only guaranteed when it is properly positioned in front of a subject. Objects: The purpose of this study was to identify the error when the Kinect was positioned at a $45^{\circ}$ angle to the longitudinal walking plane compare with those when the Kinect was positioned in front of a subject. Methods: Sixteen healthy adults performed two testing sessions consisting of walking toward and $45^{\circ}$ obliquely the Kinect. Spatiotemporal outcome measures related to stride length, stride time, step length, step time and walking speed were examined. To assess the error between Kinect and 3D motion analysis systems, mean absolute errors (MAE) were determined and compared. Results: MAE of stride length, stride time, step time and walking speed when the Kinect set in front of subjects were investigated as .36, .04, .20 and .32 respectively. MAE of those when the Kinect placed obliquely were investigated as .67, .09, .37, and .58 respectively. There were significant differences in spatiotemporal outcomes between the two conditions. Conclusion: Based on our study experience, positioning the Kinect directly in front of the person walking towards it provides the optimal spatiotemporal data. Therefore, we concluded that the Kinect should be placed carefully and adequately in clinical settings.

Speech Generation Using Kinect Devices Using NLP

  • D. Suganthi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.25-30
    • /
    • 2024
  • Various new technologies and aiding instruments are always being introduced for the betterment of the challenged. This project focuses on aiding the mute in expressing their views and ideas in a much efficient and effective manner thereby creating their own place in this world. The proposed system focuses on using various gestures traced into texts which could in turn be transformed into speech. The gesture identification and mapping is performed by the Kinect device, which is found to cost effective and reliable. A suitable text to speech convertor is used to translate the texts generated from Kinect into a speech. The proposed system though cannot be applied to man-to-man conversation owing to the hardware complexities, but could find itself very much of use under addressing environments such as auditoriums, classrooms, etc

Study of KINECT based 3D Holographic and Gesture (KINECT 기반 3D 홀로그래픽과 제스처에 대한 연구)

  • Jiang, Zhou;Seo, Laiwon;Roh, Changbae
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.411-417
    • /
    • 2013
  • Two-dimensional image processing method and tools Rigi then developed a report prepared by a variety of video and three-dimensional images are increasing demands for navigation. The hard part to experience in the real world experience in the virtual environment, and has the purpose to take advantage of. This is a system that provides a simple 3D background, but everyday actions that can control the system with the needs of an instinctive interface technology means. The purpose of this study a variety of human behavior using the Kinect device in action close to the three-dimensional technology to develop a new navigation control is Kinect Holography and 3D images using the input data so that you have the linkage is to design the system.

Kinect-based Motion Recognition Model for the 3D Contents Control (3D 콘텐츠 제어를 위한 키넥트 기반의 동작 인식 모델)

  • Choi, Han Suk
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.1
    • /
    • pp.24-29
    • /
    • 2014
  • This paper proposes a kinect-based human motion recognition model for the 3D contents control after tracking the human body gesture through the camera in the infrared kinect project. The proposed human motion model in this paper computes the distance variation of the body movement from shoulder to right and left hand, wrist, arm, and elbow. The human motion model is classified into the movement directions such as the left movement, right movement, up, down, enlargement, downsizing. and selection. The proposed kinect-based human motion recognition model is very natural and low cost compared to other contact type gesture recognition technologies and device based gesture technologies with the expensive hardware system.

Face Detection Algorithm using Kinect-based Skin Color and Depth Information for Multiple Faces Detection (Kinect 디바이스에서 피부색과 깊이 정보를 융합한 여러 명의 얼굴 검출 알고리즘)

  • Yun, Young-Ji;Chien, Sung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.1
    • /
    • pp.137-144
    • /
    • 2017
  • Face detection is still a challenging task under severe face pose variations in complex background. This paper proposes an effective algorithm which can detect single or multiple faces based on skin color detection and depth information. We introduce Gaussian mixture model(GMM) for skin color detection in a color image. The depth information is from three dimensional depth sensor of Kinect V2 device, and is useful in segmenting a human body from the background. Then, a labeling process successfully removes non-face region using several features. Experimental results show that the proposed face detection algorithm can provide robust detection performance even under variable conditions and complex background.

Smart Remote Rehabilitation System Based on the Measurement of Heart Rate from ECG Sensor and Kinect Motion-Recognition (키넥트 모션인식과 ECG센서의 심박수 측정을 기반한 스마트 원격 재활운동 시스템)

  • Kim, Jong-Jin;Gwon, Seong-Ju;Lee, Young-Sook;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.69-77
    • /
    • 2015
  • The Microsoft Kinect is a motion sensing input device which is widely used for many motion recognition applications such as fitness, sports, and rehabilitation. Until now, most of remote rehabilitation systems with the Microsoft Kinect have allowed the user or patient to do rehabilitation or fitness by following the motion of a video screen. However in this paper we propose a smart remote rehabilitation system with the Microsoft Kinect motion sensor and a wearable ECG sensor which can allow patients to offer monitoring of the individual's performance and personalized feedback on rehabilitation exercises. The proposed noble smart remote rehabilitation is able to monitor and measure the state of the patient's condition during rehabilitation exercise, and transmits it to the prescriber. This system can give feedback to a prescriber, a doctor and a patient for improving and recovering motor performance. Thus, the efficient rehabilitation training service can be provided to patient in response to changes of patient's condition during exercise.