• Title/Summary/Keyword: Kimchi spoilage

Search Result 9, Processing Time 0.018 seconds

Effect of Botanical Antimicrobial Agent-Citrus Products on the Quality Characteristics during Kimchi Fermentation (식물성 천연항균소재를 첨가한 김치의 숙성 중 품질변화)

  • Cho Sung-Hwan;Lee Seung-Gheol;Park Wan-Soo
    • Food Science and Preservation
    • /
    • v.12 no.1
    • /
    • pp.8-16
    • /
    • 2005
  • To develop natural antimicrobial agents for extending the self-life of Kimchi, the effect of botanical antimicrobial agent-citrus products(BAAC) on microorganisms related to Kimchi spoilage was investigated. The inhibitory effect of BAAC on microorganisms related to Kimchi spoilage was increased according to the concentration of BAAC. Antimicrobial activities of BAAC against microoiganisms related to Kimchi spoilage were remarkably high. The effect of BAAC on the cellular membrane function of microorganisms showed the perturbation of cells in the presence of BAAC. Direct isualization of microbial cells by using both transmission md scanning electron microscope showed microbial cell membrane was destroyed by treating with BAAC. It could be confirmed that BAAC completely inhibit the growth of the test strains. The pH of BAAC-added Kimchi was a little higher than that of the control through the fermentation period. Titratable acidify, vitamin C and viable cells in BAAC-added Kimchi were changed more slowly than those in the control. Sensory evaluation did not show any significant difference between $0.01\%$ BAAC-added Kimchi and the control that showed the best palatabilities during fermentation.

Diversity and Role of Yeast on Kimchi Fermentation (김치 발효에 관여하는 효모의 다양성 및 역할)

  • Kang, Seong Eun;Kim, Mi Ju;Kim, Tae Woon
    • Journal of the Korean Society of Food Culture
    • /
    • v.34 no.2
    • /
    • pp.201-207
    • /
    • 2019
  • This review summarizes the studies on a wide variety of yeast found in kimchi and the effects of yeast on kimchi fermentation, and discusses the direction for further research. Yeast belongs to the genera Trichosporon, Saccharomyces, Sporisorium, Pichia, Lodderomyces, Kluyveromyces, Candida, Debaryomyces, Geotrichum, Kazachstania, Brassica, Yarrowia, Hanseniaspora, Brettanomyces, Citeromyces, Rhodotorula, and Torulopsis have been identified using culture-dependent methods and metagenomics analysis. The application of yeast as a starter into kimchi has resulted in an extension of shelf life and improvement of sensory characteristics due to a decrease in the amount of lactic acid. On the other hand, some yeast cause kimchi spoilage, which typically appears as an off-odor, texture-softening, and white-colony or white-film formation on the surface of kimchi. In contrast to lactic acid bacteria, there are limited reports on yeast isolated from kimchi. In addition, it is unclear how yeast affects the fermentation of kimchi and the mechanism by which white colony forming yeast predominate in the later stage of kimchi fermentation. Therefore, more research will be needed to solve these issues.

Isolation, Identification, and Characterization of a Bacteriocin-Producing Enterococcus sp. from Kimchi and Its Application to Kimchi Fermentation

  • Moon, Gi-Seong;Kang, Chang-Hoon;Pyun, Yu-Ryang;Kim, Wang-June
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.924-931
    • /
    • 2004
  • A bacteriocin-producing lactic acid bacterium, which strongly inhibited the Lactobacillus plantarum recognized as an important acid spoilage microorganism in kimchi fermentation, was isolated from kimchi. From morphological, physiological, sugar fermentation, biochemical tests, and l6S rDNA sequencing results, the isolate was identified as an Enterococcus sp. and designated as Enterococcus sp. K25. The bacteriocin produced by Enterococcus sp. K25 inhibited several Gram-positive bacteria, including Lb. plantarum, whereas it did not inhibit Gram-negative bacteria and yeasts. Optimal temperature and pH for the bacteriocin production were $25^\circ{C}$ and 5.5, respectively. Enterococcus sp. K25 was applied to kimchi manufacturing alone and together with other preservatives (i.e., chitosan and fumaric acid). In addition, growth of lactic acid bacteria, pH, and titratable acidity (TA) were measured during aging at $5^\circ{C}$ and $10^\circ{C}$. Inoculation of Enterococcus sp. K25 together with fumaric acid showed the most synergistic effect on extension of kimchi shelf-life. Compared to control (no addition), the treatment prolonged the kimchi shelf-life up to 6 days, whereupon the eight-point TA value recognized as the edible limit was reached.

Bacteriocin with a Broad Antimicrobial Spectirum, Produced by Bacillus sp. Isolated from Kimchi

  • Mah, Jae-Hyung;Kim, Kwang-Soo;Park, Jong-Hyun;Byun, Myung-Woo;Kim, Young-Bae;Hwang, Han-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.577-584
    • /
    • 2001
  • An antimicrobially active bacterium which was identified as Bacillus brevis, was isolated from kimchi. The antimicrobial activity was found against various Gram-positive and Gram-negative bacteria including some pathogens food-spoilage microorganisms, and some yeast strains. The antimicrobial activity was especially strong against Bacillus anthracis and Shigella dysenteriae. The strong activity was observed during an early stationary phase in the culture when incubated at $37^{\circ}C$ with initial medium pH of 6.8. The antimicrobial activity was found to be stable at $90^{\circ}C$ for 30 min and in the pH range of 3-11, and it was insensitive to organic solvents including acetone, acetonitrile, ethanol, and methanol. Analysis of the bacterocin on tricine-sodium dodecyl sulfate-polyacrylamide gel suggested a molecular mass of approximately 4.5-6.0 kDa. The antimicrobial substance was characterized as a bacteriocin, because of its proteinaceous nature and low molecular weight. The bacteriocin could potentially be used as a food preservative, because of its thermostable property and broad antimicrobial spectrum.

  • PDF

Fermentation of rice flour with Weissella koreensis HO20 and Weissella kimchii HO22 isolated from kimchi and its use in the making of jeolpyeon (김치유산균(Weissella koreensis HO20, Weissella kimchii HO22)으로 발효한 쌀가루의 이화학적 특성 및 이를 이용한 절편의 제조)

  • Choi, Hyejung;Lee, Hwawon;Yoon, Sun
    • Korean journal of food and cookery science
    • /
    • v.29 no.3
    • /
    • pp.267-274
    • /
    • 2013
  • Demand for a rice cake, a popular traditional food in Korea, is rising, but its industrial-scale production is extremely difficult due to its short shelf-life caused by starch retrogradation and microbial spoilage. By means of the sourdough fermentation technique, we attempt to develop rice cakes with a longer shelf-life. Heterofermentative lactic acid bacteria (Weissella koreensis HO20, Weissella kimchii HO22) isolated from kimchi were used to ferment wet-milled rice flour for their abilities to produce exopolysaccharides and to inhibit the microbial spoilage of rice cakes. After 24 hr of fermentation at $25^{\circ}C$, viable cell counts in rice dough increased from $10^6$ CFU/g to $10^8$ CFU/g and total titratable acidity increased from 0.05% to 0.20%, whereas pH decreased from 6.5 to 5.1. Fermented rice flour showed significantly lower peak, trough, and final viscosities as well as breakdown and setback viscosities measured by rapid viscoanalyzer. Both lactic acid bacteria showed in vitro antifungal activity against Penicillium crustosum isolated from rice cakes. The antifungal activity remained constant after the treatments with heat, proteinase K and trypsin, but fell significantly by increase of pH. Rice cakes made of fermented rice flour were found to retard mycelial growth of P. crustosum. The degree of retrogradation as measured by the hardness of the rice cake was significantly reduced by the use of fermented rice flour. The results suggest that use of fermented rice flour has a beneficial role in retarding starch retrogradation and in preventing fungal growth, hence extending the shelf-life of rice cakes.

Antimicrobial Activity of Bamboo Leaves Extract on Microorganisms Related to Kimchi Fermentation (김치 발효미생물에 대한 대나무잎 추출물의 항균력)

  • Chung, Dae-Kyun;Yu, Ri-Na
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.1035-1038
    • /
    • 1995
  • Antimicrobial activity of bamboo leaves extract on microorganisms related to kimchi fermentation was investigated. Bamboo leaves were extracted with several ogranic solvents such as methanol, acetone, ethyl ether, and ethyl acetate. The bamboo extract with ethyl acetate showed the strongest antimicrobial activity among them. Strong antimicrobial activities of the extract against microorganisms related to kimchi fermentation and food spoilage indicated that the extract had a wide range of antimicrobial spectrum. The antimicrobial activity was especially strong against Brettanomyces custersii, Klebsiella oxytoca, Pichia membranaefaciens which cause kimchi softening. In addition, the antimicrobial activity of bamboo leaves extract was higher than that of 0.5% and 1.0% sorbic acid, and moreover it was stronger in pH 5 compared to pH 7.

  • PDF

Effect of the mixed culture of heterofermentative lactic acid bacteria and acid-tolerant yeast on the shelf-life of sourdough (이상발효유산균과 내산성 효모와의 혼합배양이 사워도우의 저장성에 미치는 영향)

  • Lim, Eun-Seo
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.471-481
    • /
    • 2016
  • The primary objective of this study was to investigate the effects of the bacteriocin-producing heterofermentative lactic acid bacteria (LAB) and acid-resistant yeast isolated from Mukeunji, a Korean ripened kimchi on shelf-life extension and quality improvement of sourdough. According to gene sequence analysis the heterofermentative LAB that showed the antimicrobial activity against bread-spoilage Bacillus strains were identified as Leuconostoc mesenteroides LAS112, Lactobacillus brevis LAS129, and L. mesenteroides subsp. dextranicum LAB137. In addition, the yeasts that were able to grow at acidic pH were identified as Pichia membranifaciens YS05, Pichia fermentans YS19, and Pichia anomala YS26. During sourdough fermentation the levels of acetic acid and bacteriocin produced by L. brevis LAS129 strain were higher than those of L. mesenteroides LAS112 and L. mesenteroides subsp. dextranicum LAS 137 strains, whereas LAS112 strain produced the highest levels of lactic acid. The maximum bacteriocin activity (640 AU/g) against Bacillus subtilis ATCC 35421 was obtained in sourdough fermented by mixed culture of L. brevis LAS129 and P. membranifaciens YS05 or P. anomala YS26. After 24 h of fermentation at $30^{\circ}C$, the viable cell counts of LAS129 ($10^9CFU/g$) in sourdough were higher than those of the YS05 or YS26 ($10^7CFU/g$). Meanwhile, the viable cells of bread-spoilage strain in sourdough fermented with these strains were significantly (P < 0.05) lower than the control group.

Prevention of Fungal Contamination during Cheese Ripening - Current Situation and Future Prospects (치즈 숙성 중의 곰팡이 오염 방제 - 현황과 전망)

  • Jung, Hoo Kil;Choi, Ha Nuel;Oh, Hyun Hee;Huh, Chang Ki;Yang, Hee Sun;Oh, Jeon Hui;Park, Jong Hyuk;Choi, Hee Young;Kim, Kyoung Hee;Lee, Seung Gu
    • Journal of Dairy Science and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.75-81
    • /
    • 2012
  • Molds cause severe cheese deterioration, even though some white and blue molds are used for the manufacture of Camembert and Blue cheese, respectively. The species of Geotrichum, Moniliella, Aspergillus, Penicillium, Mucor, Fusarium, Phoma, and Cladosporium are the main fungi that affect contamination during cheese ripening. Once deteriorated by fungal spoilage, cheese becomes toxic and inedible. Fungal deterioration of cheese decreases the nutritional value, flavor profiles, physicochemical and organoleptic properties, and increases toxicity and infectious disease. Fungal contamination during cheese ripening is highly damaging to cheese production in Korean farmstead milk processing companies. Therefore, these companies hesitate to develop natural and ripened cheese varieties. This article discusses the recent and ongoing developments in the removal techniques of fungal contamination during cheese ripening. There are 2 categories of antifungal agents: chemical and natural. Major chemical agents are preservatives (propionic acid, sodium propionate, and calcium propionate) and ethanol. Among the natural agents, grapefruit seed extract, phytoncide, essential oils, and garlic have been investigated as natural antifungal agents. Additionally, some studies have shown that antibiotics such as natamycin and Delvocid$^{(R)}$, have antifungal activities for cheese contaminated with fungi. Microbial resources such as probiotic lactic acid bacteria, Propionibacterium, lactic acid bacteria from Kimchi, and bacteriocin are well known as antifungal agents. In addition, ozonization treatment has been reported to inhibit the growth activity of cheese-contaminating fungi.

  • PDF

Stability of Anti-Yeast Activities and Inhibitory Effects of Defatted Green Tea Seed Extracts on Yeast Film Formation (탈지 녹차씨 추출물의 항효모 활성 안정성 및 산막 형성 억제능 평가)

  • Yang, Eun Ju;Seo, Ye-Seul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.3
    • /
    • pp.327-334
    • /
    • 2017
  • Water and 75% ethanol extracts were prepared from defatted green tea seeds and evaluated for their anti-yeast activities. The antimicrobial activities of defatted green tea seed extracts (DGTSEs) were tested against food-spoilage bacteria, yeasts, and molds. DGTSEs exhibited antimicrobial activities with minimum inhibitory concentrations of $39{\sim}1,250{\mu}g/mL$ against three bacteria, two molds, and all tested yeast strains. Ethanol extract showed higher antimicrobial activity than water extract. The stability of anti-yeast activities of DGTSEs was examined under different conditions of temperature, pH, and NaCl concentrations. The anti-yeast activities of DGTSEs were stable at pH 3~9, 0~20% NaCl, and $100^{\circ}C$ for 30 min. However, anti-yeast activities of DGTSEs decreased upon heating at $70^{\circ}C$ for 24 h or $121^{\circ}C$ for 15 min. DGTSEs were applied to food models to determine their inhibitory effects on yeast film formation. Water and 75% ethanol extracts were effective in preventing yeast film formation at concentrations more than 156 and $39{\mu}g/mL$ in soy sauce, 156 and $78{\mu}g/mL$ in pickle sauce, and 78 and $39{\mu}g/mL$ in kimchi, respectively.