DOI QR코드

DOI QR Code

Effect of the mixed culture of heterofermentative lactic acid bacteria and acid-tolerant yeast on the shelf-life of sourdough

이상발효유산균과 내산성 효모와의 혼합배양이 사워도우의 저장성에 미치는 영향

  • Lim, Eun-Seo (Department of Food Science & Nutrition, Tongmyong University)
  • 임은서 (동명대학교 식품영양학과)
  • Received : 2016.11.30
  • Accepted : 2016.12.19
  • Published : 2016.12.31

Abstract

The primary objective of this study was to investigate the effects of the bacteriocin-producing heterofermentative lactic acid bacteria (LAB) and acid-resistant yeast isolated from Mukeunji, a Korean ripened kimchi on shelf-life extension and quality improvement of sourdough. According to gene sequence analysis the heterofermentative LAB that showed the antimicrobial activity against bread-spoilage Bacillus strains were identified as Leuconostoc mesenteroides LAS112, Lactobacillus brevis LAS129, and L. mesenteroides subsp. dextranicum LAB137. In addition, the yeasts that were able to grow at acidic pH were identified as Pichia membranifaciens YS05, Pichia fermentans YS19, and Pichia anomala YS26. During sourdough fermentation the levels of acetic acid and bacteriocin produced by L. brevis LAS129 strain were higher than those of L. mesenteroides LAS112 and L. mesenteroides subsp. dextranicum LAS 137 strains, whereas LAS112 strain produced the highest levels of lactic acid. The maximum bacteriocin activity (640 AU/g) against Bacillus subtilis ATCC 35421 was obtained in sourdough fermented by mixed culture of L. brevis LAS129 and P. membranifaciens YS05 or P. anomala YS26. After 24 h of fermentation at $30^{\circ}C$, the viable cell counts of LAS129 ($10^9CFU/g$) in sourdough were higher than those of the YS05 or YS26 ($10^7CFU/g$). Meanwhile, the viable cells of bread-spoilage strain in sourdough fermented with these strains were significantly (P < 0.05) lower than the control group.

본 연구에서는 묵은지로부터 분리된 박테리오신을 생산하는 이상발효 유산균 및 내산성 효모가 사워도우의 저장 기간 연장과 품질 개선에 미치는 영향을 조사하였다. 유전자 염기서열 분석 결과 빵 부패세균인 Bacillus 속에 대한 항균활성을 나타낸 이상발효 유산균은 Leuconostoc mesenteroides LAS112, Lactobacillus brevis LAS129 및 L. mesenteroides subsp. dextranicum LAB137으로 동정되었고, 산성 pH 하에서 증식 가능한 효모는 Pichia membranifaciens YS05, Pichia fermentans YS19 및 Pichia anomala YS26으로 확인되었다. 사워도우 발효에 사용된 L. brevis LAS129는 L. mesenteroides LAS112 및 L. mesenteroides subsp. dextranicum LAS 137 보다 더많은 양의 초산과 박테리오신 활성을 나타내었으나, LAS112는 가장 많은 양의 유산을 생산하였다. Bacillus subtilis ATCC 35421에 대한 최대의 박테리오신 활성(640 AU/g)은 L. brevis LAS129와 P. membranifaciens YS05 혹은 P. anomala YS26으로 혼합 발효시킨 사워도우 내에서 관찰되었다. $30^{\circ}C$에서 24시간 발효 후 사워도우 내 LAS129의 균수($10^9CFU/g$)는 YS05 혹은 YS26의 효모 균수($10^7CFU/g$)보다 높게 검출되었다. 한편, 이들 균주들을 이용하여 발효시킨 사워도우 내에 존재하는 빵 부패균의 균수는 대조구 보다 유의하게(P < 0.05) 낮은 수준으로 나타났다.

Keywords

References

  1. Alfonzo, A., Ventimiglia, G., Corona, O., Di Gerlando, R., Gaglio, R., Francesca, N., Moschetti, G., and Settanni, L. 2013. Diversity and technological potential of lactic acid bacteria of wheat flours. Food Microbiol. 36, 343-354. https://doi.org/10.1016/j.fm.2013.07.003
  2. Bailey, C.P. and Von Holy, A. 1993. Bacillus spore contamination associated with commercial bread manufacture. Food Microbiol. 10, 287-294. https://doi.org/10.1006/fmic.1993.1033
  3. Beales, N. 2004. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Compr. Rev. Food Sci. F. 3, 1-20. https://doi.org/10.1111/j.1541-4337.2004.tb00057.x
  4. Chavan, R.S. and Chavan, S.R. 2011. Sourdough technology-a traditional way for wholesome foods: a review. Compr. Rev. Food Sci. 10, 170-183.
  5. Cheigh, H.S. and Park, K.Y. 1994. Biochemical, microbiological, and nutritional aspects of kimchi. Crit. Rev. Food Sci. Nutr. 34, 175-203. https://doi.org/10.1080/10408399409527656
  6. Choi, H., Kim, Y.W., Hwang, I., Kim, J., and Yoon, S. 2012. Evaluation of Leuconostoc citreum HO12 and Weissella koreensis HO20 isolated from kimchi as a starter culture for whole wheat sourdough. Food Chem. 134, 2208-2216. https://doi.org/10.1016/j.foodchem.2012.04.047
  7. Cizeikiene, D., Juodeikiene, G., Paskevicius, A., and Bartkiene, E. 2013. Antimicrobial activity of lactic acid bacteria against pathogenic and spoilage microorganisms isolated from food and their control in wheat bread. Food Control 31, 539-545. https://doi.org/10.1016/j.foodcont.2012.12.004
  8. Collins, N.F., Kirshner, L.A.M., and Von Holy, A. 1991. A characterization of Bacillus isolates from ropy bread, bakery equipment and raw material. S. Afr. J. Sci. 87, 62-66.
  9. Corsetti, A., Gobbetti, M., and Smacchi. E. 1996. Antimicrobial activity of sourdough lactic acid bacteria: isolation of a bacteriocin-like inhibitory substance from Lactobacillus sanfrancisco C57. Food Microbiol. 13, 447-456. https://doi.org/10.1006/fmic.1996.0051
  10. Corsetti, A., Lavermicocca, P., Morea, M., Baruzzi, F., Tosti, N., and Gobbetti, M. 2001. Phenotypic and molecular identification and clustering of lactic acid bacteria and yeasts from wheat (species Triticum durum and Triticum aestivum) sourdoughs of Southern Italy. Int. J. Food Microbiol. 64, 95-104. https://doi.org/10.1016/S0168-1605(00)00447-5
  11. Corsetti, A. and Settanni, L. 2007. Lactobacilli in sourdough frermentation. Food Res. Int. 40, 539-558. https://doi.org/10.1016/j.foodres.2006.11.001
  12. Corsetti, A., Settanni, L., and Van Sinderen, D. 2004. Characterization of bacteriocin-like inhibitory substances (BLIS) from sourdough lactic acid bacteria and evaluation of their in vitro and in situ activity. J. Appl. Microbiol. 96, 521-534. https://doi.org/10.1111/j.1365-2672.2004.02171.x
  13. De Vuyst, L. and Neysens, P. 2005. The sourdough microflora: biodiversity and metabolic interactions. Trends Food Sci. Tech. 16, 43-56. https://doi.org/10.1016/j.tifs.2004.02.012
  14. Dengate, S. and Ruben, A. 2002. Controlled trial of cumulative behavioral effects of a common bread preservative. J. Paediatr. Child H. 38, 373-376. https://doi.org/10.1046/j.1440-1754.2002.00009.x
  15. Ganzle, M.G., Weber, S., and Hammes, W.P. 1999. Effect of ecological factors on the inhibitory spectrum and activity of bacteriocins. Int. J. Food Microbiol. 46, 207-217. https://doi.org/10.1016/S0168-1605(98)00205-0
  16. Garneau, S., Martin, N.I., and Vederas, J.C. 2002. Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie 84, 577-592. https://doi.org/10.1016/S0300-9084(02)01414-1
  17. Gerez, C.L., Torino, M.I., Roll, G., and Font de Valdez, G. 2009. Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control 20, 144-148. https://doi.org/10.1016/j.foodcont.2008.03.005
  18. Gobbetti, M. 1998. The sourdough microflora: Interactions of lactic acid bacteria and yeasts. Trends Food Sci. Technol. 9, 267-274. https://doi.org/10.1016/S0924-2244(98)00053-3
  19. Gobbetti, M., Corsetti, A., and Rossi, J. 1994. The sourdough microflora. Interactions between lactic acid bacteria and yeasts: metabolism of amino acids. World J. Microbiol. Biotechnol. 10, 275-279. https://doi.org/10.1007/BF00414862
  20. Gobbetti, M., Corsetti, A., and Rossi, J. 1995. Interaction between lactic acid bacteria and yeasts in sourdough using a rheofermentometer. World J. Microbiol. Biotechnol. 11, 625-630. https://doi.org/10.1007/BF00361004
  21. Hammers, W.P., Brandt, M.J., Francis, K.L., Rosenheim, M., Seitter, F.H., and Vogelmann, S. 2005. Microbial ecology of cereal fermentations. Trends Food Sci. Technol. 16, 4-11. https://doi.org/10.1016/j.tifs.2004.02.010
  22. Hole, H., Nilssen, O., and Nes, I.F. 1991. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J. Bacteriol. 173, 3879-3887. https://doi.org/10.1128/jb.173.12.3879-3887.1991
  23. Juodeikiene, G., Salomskiene, J., Eidukonyte, D., Vidmantiene, D., Narbutaite, V., and Vaiciulyte-Funk, L. 2011. The impact of novel fermented products containing extruded wheat material on the quality of wheat bread. Food Technol. Biotechnol. 49, 502-510.
  24. Katina, K., Heinio, R.L., Autio, K., and Poutanen, K. 2006. Optimization of sourdough process for improved sensory profile and texture of wheat bread. LWT Food Sci. Technol. 39, 1189-1202. https://doi.org/10.1016/j.lwt.2005.08.001
  25. Kim, H.Y., Bong, Y.J., Jeong, J.K., Lee, S.B., Kim, B.Y., and Park, K.Y. 2016. Heterofermentative lactic acid bacteria dominate in Korean commercial kimchi. Food Sci. Biotechnol. 25, 541-545. https://doi.org/10.1007/s10068-016-0075-x
  26. Kim, H.J., Lee, C.S., Kim, Y.C., Yang, C.B., and Kang, S.M. 1996. Identification of yeasts isolated from kimchi for kimchi starter. Kor. J. Appl. Microbiol. Biotechnol. 24, 430-438.
  27. Li, Z., Li, H., Deng, C., Bian, K., and Liu, C. 2015. Effect of Lactobacillus plantarum DM616 on dough fermentation and Chinese steamed bread quality. J. Food Process. Pres. 39, 30-37. https://doi.org/10.1111/jfpp.12205
  28. Lim, E.S. 2016. Microbiological and chemical properties of sourdough fermented with probiotic lactic acid bacteria. Korean J. Microbiol. 52, 84-97. https://doi.org/10.7845/kjm.2016.6012
  29. Makras, L., Triantafyllou, V., Fayol-Messaoudi, D., Adriany, T., Zoumpopoulou, G., Tsakalidou, E., Servin, A., and De Vuyst, L. 2006. Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds. Res. Microbiol. 157, 241-247. https://doi.org/10.1016/j.resmic.2005.09.002
  30. Mentes, O., Ercan, R., and Akcelik, M. 2007. Inhibitor activities of two Lactobacillus strains, isolated from sourdough, against ropeforming Bacillus strains. Food Control 18, 359-363. https://doi.org/10.1016/j.foodcont.2005.10.020
  31. Min, J.H., Hyun, S.H., Kang, M.G., Lee, H.B., Kim, C.M., and Kim, H.K. 2012. Isolation and identification of yeasts from wild flowers of Daejeon city and Chungcheongnam-do in Korea. Korean J. Mycol. 40, 141-144. https://doi.org/10.4489/KJM.2012.40.3.141
  32. Narendranath, N.V., Thomas, K.C., and Ingledew, W.M. 2001. Effects of acetic and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J. Ind. Microbiol. Biotechnol. 26, 171-177. https://doi.org/10.1038/sj.jim.7000090
  33. Ohhira, I., Shinsuke, K., Morita, H., Suzuki, T., Omita, S., Hisamatsu, S., Sonori, S., and Shinoda, S. 2004. Identification of 3-phenyllactic acid as a possible antibacterial substance produced by Enterococcus faecalis TH10. Biocontrol Sci. 9, 77-81. https://doi.org/10.4265/bio.9.77
  34. Paramithiotis, S., Gioulatos, S., Tsakalidou, E., and Kalantzopoulos, G. 2006. Interactions between Saccharomyces cerevisiae and lactic acid bacteria in sourdough. Process Biochem. 41, 2429-2433. https://doi.org/10.1016/j.procbio.2006.07.001
  35. Park, Y.H., Kwon, J.J., Jo, D.H., and Kim, S.I. 1983. Microbial inhibition of lactic acid bacteria strains isolated from kimchi. J. Korean Agric. Chem. Soc. 26, 35-40.
  36. Pepe, O., Blaiotta, G., Moschetti, G., Greco, T., and Villani, F. 2003. Rope-producing strains of Bacillus spp. from wheat bread and strategy for their control by lactic acid bacteria. Appl. Environ. Microbiol. 69, 2321-2329. https://doi.org/10.1128/AEM.69.4.2321-2329.2003
  37. Rosenquist, H. and Hansen, A. 1995. Contamination profiles and characterization of Bacillus species in white bread and raw materials of bread production. Int. J. Food Microbiol. 26, 353-363. https://doi.org/10.1016/0168-1605(94)00147-X
  38. Rosenquist, H. and Hansen, A. 1998. The antimicrobial effect of organic acids, sourdough and nisin against Bacillus subtilis and B. licheniformis isolated from wheat bread. J. Appl. Microbiol. 85, 621-631. https://doi.org/10.1046/j.1365-2672.1998.853540.x
  39. Settanni, L., Massitti, O., Van Sinderen, D., and Corsetti, A. 2005. In situ activity of a bacteriocin-producing Lactococcus lactis strain. Influence on the interactions between lactic acid bacteria during sourdough fermentation. J. Appl. Microbiol. 99, 670-681. https://doi.org/10.1111/j.1365-2672.2005.02647.x
  40. Thompson, J.M., Dodd, C.E.R., and Waites, W.M. 1993. Spoilage of bread by Bacillus. Int. Biodeterior. Biodegrad. 32, 55-66. https://doi.org/10.1016/0964-8305(93)90039-5
  41. Valerio, F., De Bellis, P., Lonigro, S.L., Visconti, A., and Lavermicocca, P. 2008. Use of Lactobacillus plantarum fermentation products in bread-making to prevent Bacillus subtilis ropy spoilage. Int. J. Food Microbiol. 122, 328-332. https://doi.org/10.1016/j.ijfoodmicro.2008.01.005
  42. Ventimiglia, G., Alfonzo, A., Galluzzo, P., Corona, O., Francesca, N., Caracappa, S., Moschetti, G., and Settanni, L. 2015. Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation. Food Microbiol. 51, 57-68. https://doi.org/10.1016/j.fm.2015.04.011
  43. Voysey, P.A. and Hammond, J.C. 1993. Reduced-additive breadmaking technology. In Technology of Reduced Additive Foods ed. Smith, J. pp. 80-94. London: Blackie Academic and Professional.

Cited by

  1. 렌넷 커드 내 히스타민 생성에 관한 프로바이오틱 유산균이 생산한 항균 물질의 영향 vol.54, pp.2, 2016, https://doi.org/10.7845/kjm.2018.7093
  2. Storage stability of sourdough bread with lactic acid bacteria culture solution and cinnamon extract vol.26, pp.1, 2019, https://doi.org/10.11002/kjfp.2019.26.1.17
  3. Isolation and identification of biogenic amine-degrading probiotic lactic acid bacteria isolated from over-ripened kimchi vol.27, pp.6, 2016, https://doi.org/10.11002/kjfp.2020.27.6.754