• Title/Summary/Keyword: Kim's tie

Search Result 134, Processing Time 0.033 seconds

Experimental study of structural behavior of 80MPa concrete outrigger member using post tension method (PT공법을 적용한 80MPa급 콘크리트 아웃리거부재의 실험적 연구)

  • Choi, Jong-Moon;Kim, Woo-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.31-34
    • /
    • 2009
  • Large outrigger elements tie the concrete core to perimeter columns, significantly increasing the building's lateral stiffness as well as its resistance to overturning due to wind. The outriggers are deep elements, and large tie forces are resisted by top and bottom heavy longitudinal reinforcing and vertical ties. To reduce construction costs, all primary reinforcing bars in outrigger levels are SD500. Further, concrete strengths of 80MPa have been specified for outrigger elements. However, the reductions in the amount of concrete and reinforcement steel are more increased in tall building. With these backgrounds, 80MPa high strength concrete outrigger system using post tension method is developed. Significant economic savings can be made by reducing the element sizes and material content. The developed outrigger system is designed using strut-and-tie models. In addition, four 1/4-scale test specimens were selected from the same prototype structure. The results from the tests are confirmed that the structural behaviors of the developed outrigger member have better capacities than those of a conventional method.

  • PDF

A Study on the Crushing Characteristic of the Ballast Gravel at High-Speed Railroad (고속선 도상자갈의 파쇄특성에 관한 연구)

  • Lee, Choon-Kil;Kim, Nam-Hong;Woo, Byoung-Koo;Lee, Sung-Uk
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.4
    • /
    • pp.384-389
    • /
    • 2008
  • The ballast, one of track components, plays an essential role as intermedium in transmitting train load to subgrade safely, and the deterioration of ballast directly effects the growth of track irregularity. In this study, we determined the main factor of ballast deterioration was miniature of ballast gravel caused MTT (Multiple Tie Tamper) works and accumulated traffic loads. To estimate the deterioration characteristics of ballast, we carried out field test (Chap.2) through track construction for test and the model test (Chap.3) simulating the actual operation environment, have done a comparative analysis with the sample's result (crushing rate) of high-speed railroad running actually.

An Experimental investigation on the dependation characteristics of CN/CV cables : dependence on the materials and curing process (배전용 CN/CV 케이블의 절연재료 및 가교방식별 열화특성연구)

  • Kim, H.J.;Choi, Y.H.;Ahn, Y.K.;Kim, K.S.;Koo, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.969-972
    • /
    • 1992
  • It is shown that the ac breakdown strength, treeing phenomena, oxidation level, and crystallinity of unaged and aged distribution CV cables vary with XLPE insulations (characterizing anti-oxidation) and curing process. The maximum size of bow-tie tree in insulation influenced on the decrease of ac breakdown strength and the increase of oxidation level and crystallinity of XLPE according to aging time lead to increase the size and density of bow-tie trees.

  • PDF

Numerical analysis of the under-body flow field of a train and Study of Heighter-effect for prevention of ballast -flying (자갈비산 방지를 위한 하부유동장 해석 및 Heighter 설치의 타당성 검토)

  • Kim Jong-Yong;Kwon Hyeok-Bin;Kim Tae-Yoon;Ku Yo-Cheon;Lee Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.874-879
    • /
    • 2004
  • The Korean high speed train runs at 300 km/h, ballast-flying phenomenon often happens by strong train-wind. It is important to consider the prevention of ballast-flying phenomenon, because the train under-body and fares or walker around a track might be damaged. In this study, Numerical analysis of the under-body flow field of a train and study of heighter-effect were conducted to decrease the speed of under-body. The shape of under-body was simplified for convenience of meshing and analysis. According to results of Taguchi's design by orthogonal arrays, a height of tie is dominant in the flow field, so if the heighter is installed on tie, the speed of under-body might be decreased. To apply the result of this study is useful to build a new high-speed-line might be expected.

  • PDF

Finite Element Analysis to Determine Shear Behavior of Prestressed Concrete Deep Beams (유한요소법을 이용한 프리스트레스트 콘크리트 깊은 보의 전단 거동 해석)

  • Jin, Hui-Jing;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.165-172
    • /
    • 2019
  • In this study, the shear strength of prestressed concrete deep beams is predicted using finite element analysis, and the variation in the shear strength according to the degree of prestressing is investigated. Numerical analysis results are compared with results obtained by the strut-and-tie model and associated experiments. Numerical analyses are performed on prestressed concrete deep beams with different values of concrete strength, effective prestress, ratio of tensile reinforcement, and shear span to effective depth ratio. The shear strength predicted by the numerical analysis is similar to the experimental value obtained, with an error of less than 5%. However, the strut-and-tie model highly overestimated the shear strength of prestressed concrete deep beams with a concentrated loading area. The ultimate shear capacity of prestressed concrete deep beams increased linearly with increasing prestresss applied to the tendon.

The Effect of Wind Load on the Stability of a Container Crane (풍하중이 컨테이너 크레인의 안정성에 미치는 영향 분석)

  • Lee Seong Wook;Shim Jae Joon;Han Dong Seop;Park Jong Seo;Han Geun Jo;Lee Kwon Soon;Kim Tae Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.148-155
    • /
    • 2005
  • This study was carried out to analyze the effect of direction of wind load and machinery house location on the stability of container crane loading/unloading a container on a vessel. The overturning moment of container crane under wind load at 50m/s velocity was estimated by analyzing reaction forces at each supporting point. And variations of reaction forces at each supporting point of a container crane were analyzed according to direction of wind load and machinery house location. The critical location of machinery house was also investigated to install a tie-down which has an anti-overturning function of container crane at the land side supporting point.

The analysis of ballast abrasion and fracture by Multiple Tie Tamper (장비작업에 의한 도상자갈의 마모.파쇄변화에 관한 분석)

  • Lee, Choon-Kil;Kim, Kwan-Hyung
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1024-1028
    • /
    • 2008
  • The ballast, one of track components, plays an essential role as intermedium in transmitting train load to subgrade safely, and the deterioration of ballast directly effects the growth of track irregularity. In this study, we determined the main factor of ballast deterioration was miniature of ballast gravel caused MTT(Multiple Tie Tamper) works and accumulated traffic loads. To estimate the deterioration characteristics of ballast, we carried out field test through track construction for test and the model test simulating the actual operation environment, have done a comparative analysis with the sample's result(crushing rate) of high-speed railroad running actually.

  • PDF

Safety Evaluation of Horizontal and Vertical Bolted Connection between PHC Piles Using Finite Element Analysis (유한요소해석을 통한 수평 및 수직볼트로 체결된 PHC 파일 연결부의 안전성 평가)

  • Kim, Su Eun;Kim, Sung Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.97-104
    • /
    • 2018
  • The safety evaluation of horizontal and vertical bolted connection between PHC piles is presented. The numerical analysis model is constructed using the commercial finite element program, ABAQUS, in which 3D solid element is used to model all the connection devices. The actual bolted connection is idealized by the contact and tie condition given in ABAQUS. Through the finite element analysis, the compression, tensile, bending and shear behaviors of PHC pile connection were analyzed. The safety factor based on Von-Mises and yield stress was calculated for the safety evaluation of each connection devices.

Expression of H-ras, RLIP76 mRNA and Protein, and Angiogenic Receptors in Corpus Luteum Tissues during Estrous Cycles (난소 내 황체조직에서 발정주기별 H-Ras, RLIP76, Angiogenic Receptors mRNA와 Protein의 발현)

  • Kim, Minseong;Lee, Sang-Hee;Lee, Seunghyung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.457-461
    • /
    • 2018
  • Corpus luteum (CL) is a transient endocrinal tissue that undergoes repeated formation and regression during the estrous cycle. In this study, we hypothesized that the functional and structural mechanism of angiogenesis is similar between CL and tumor formation. First, we measured mRNA and protein expression of angiogenic receptors (vascular endothelial growth factor receptor-2, VEGFR2; Tie 2) in the early, middle, and late phase CL tissues during the estrous cycle. Ral-interacting protein of 76 kDa (RLIP76) and H-ras mRNA and protein were also expressed in the CL tissues. VEGFR2 and Tie 2 mRNA and protein were expressed in the early and middle phase CLs and decreased in the late phase. H-ras mRNA and protein were expressed in the early and middle phase CLs, but not in the late phase. RLIP76 mRNA was expressed in all phase CLs, and the protein expression was highest in early phase CLs. We suggest that RLIP76 and H-ras, an oncogenic gene, regulate the function of the CL during the estrous cycle, and the proteins will play an important role in the angiogenic mechanism of the CL.