• 제목/요약/키워드: Keyword-based

Search Result 1,126, Processing Time 0.029 seconds

Assessment of the Quality of Reporting on Case Reports in Journal of Sasang Constitutional Medicine from June 2018 to December 2021: Using CARE Guideline (2018~2021년 사상체질의학회지 증례 보고의 질 평가 : CARE지침을 바탕으로)

  • Kim, Ji Hwan;Jeong, Aram;Lee, Hye Lim
    • Journal of Sasang Constitutional Medicine
    • /
    • v.34 no.1
    • /
    • pp.13-27
    • /
    • 2022
  • Objectives The purpose of this study is to reevaluate the quality of reporting on case reports published in Journal of Sasang Constitutional Medicine (SCM) from June 2018 to December 2021, compared with January 2015 to May 2018. Methods Case reports were identified by searching from archive on the website of society of Journal of SCM. We assessed the quality of reporting on them based on CAse REport (CARE) guideline. Results A total of 32 case reports was finally included for the assessment. Overall quality of reporting was improved compared to one of previous study. The median reported rate of 'sufficiently' reporting increased by 7.8% from 66.7% to 74.5%, while the one as evaluated 'not sufficiently' and 'not reported' decreased by 4.1% from 14.8% to 10.7%, and 3.5% from 21.4% to 17.9%, respectively. However, more than 50% of 32 case reports did not still report 5 items about intervention adherence and tolerability(96.9%), diagnostic challenges(93.8%), adverse events(87.5%), timeline(68.8%), and patient's perspective on interventions(65.6%). Compared to the results of previous study, continuous attention is required for adverse events and changes in intervention in which the unreported rate increased by 18.3% and 6.3%, respectively. In addition, prognostic characteristics, patient's informed consent, patient's occupation, and keyword of 'Case report' and 'Sasang (Constitutional) medicine' should be sufficiently reported in the future. Conclusions Despite the overall improvement in the quality of reporting, efforts to improve the quality of reporting should be continued by referring to well-reported cases reports previously published in Journal of SCM.

Visualizing Unstructured Data using a Big Data Analytical Tool R Language (빅데이터 분석 도구 R 언어를 이용한 비정형 데이터 시각화)

  • Nam, Soo-Tai;Chen, Jinhui;Shin, Seong-Yoon;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.151-154
    • /
    • 2021
  • Big data analysis is the process of discovering meaningful new correlations, patterns, and trends in large volumes of data stored in data stores and creating new value. Thus, most big data analysis technology methods include data mining, machine learning, natural language processing, and pattern recognition used in existing statistical computer science. Also, using the R language, a big data tool, we can express analysis results through various visualization functions using pre-processing text data. The data used in this study was analyzed for 21 papers in the March 2021 among the journals of the Korea Institute of Information and Communication Engineering. In the final analysis results, the most frequently mentioned keyword was "Data", which ranked first 305 times. Therefore, based on the results of the analysis, the limitations of the study and theoretical implications are suggested.

  • PDF

Visualizing Article Material using a Big Data Analytical Tool R Language (빅데이터 분석 도구 R 언어를 이용한 논문 데이터 시각화)

  • Nam, Soo-Tai;Shin, Seong-Yoon;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.326-327
    • /
    • 2021
  • Newly, big data utilization has been widely interested in a wide variety of industrial fields. Big data analysis is the process of discovering meaningful new correlations, patterns, and trends in large volumes of data stored in data stores and creating new value. Thus, most big data analysis technology methods include data mining, machine learning, natural language processing, and pattern recognition used in existing statistical computer science. Also, using the R language, a big data tool, we can express analysis results through various visualization functions using pre-processing text data. The data used in this study were analyzed for 29 papers in a specific journal. In the final analysis results, the most frequently mentioned keyword was "Research", which ranked first 743 times. Therefore, based on the results of the analysis, the limitations of the study and theoretical implications are suggested.

  • PDF

A Study on Improving Precision Rate in Security Events Using Cyber Attack Dictionary and TF-IDF (공격키워드 사전 및 TF-IDF를 적용한 침입탐지 정탐률 향상 연구)

  • Jongkwan Kim;Myongsoo Kim
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.9-19
    • /
    • 2022
  • As the expansion of digital transformation, we are more exposed to the threat of cyber attacks, and many institution or company is operating a signature-based intrusion prevention system at the forefront of the network to prevent the inflow of attacks. However, in order to provide appropriate services to the related ICT system, strict blocking rules cannot be applied, causing many false events and lowering operational efficiency. Therefore, many research projects using artificial intelligence are being performed to improve attack detection accuracy. Most researches were performed using a specific research data set which cannot be seen in real network, so it was impossible to use in the actual system. In this paper, we propose a technique for classifying major attack keywords in the security event log collected from the actual system, assigning a weight to each key keyword, and then performing a similarity check using TF-IDF to determine whether an actual attack has occurred.

Consumers' perceptions of dietary supplements before and after the COVID-19 pandemic based on big data

  • Eunjung Lee;Hyo Sun Jung;Jin A Jang
    • Journal of Nutrition and Health
    • /
    • v.56 no.3
    • /
    • pp.330-347
    • /
    • 2023
  • Purpose: This study identified words closely associated with the keyword "dietary supplement" (DS) using big data in Korean social media and investigated consumer perceptions and trends related to DSs before (2019) and after the coronavirus disease 2019 (COVID-19) pandemic (2021). Methods: A total of 37,313 keywords were found for the 2019 period, and 35,336 keywords were found for the 2021 period using blogs and cafes on Daum and Naver. Results were derived by text mining, semantic networking, network visualization analysis, and sentiment analysis. Results: The DS-related keywords that frequently appeared before and after COVID-19 were "recommend", "vitamin", "health", "children", "multiple", and "lactobacillus". "Calcium", "lutein", "skin", and "immunity" also had high frequency-inverse document frequency (TF-IDF) values. These keywords imply a keen interest in DSs among Korean consumers. Big data results also reflected social phenomena related to DSs; for example, "baby" and "pregnant woman" had lower TD-IDF values after the pandemic, suggesting lower marriage and birth rates but higher values for "joint", indicating reduced physical activity. A network centered on vitamins and health care was produced by semantic network analysis in 2019. In 2021, values were highest for deficiency and need, indicating that individuals were searching for DSs after the COVID-19 pandemic due to a lack an awareness of the need for adequate nutrient intake. Before the pandemic, DSs and vitamins were associated with healthcare and life cycle-related topics, such as pregnancy, but after the COVID-19 pandemic, consumer interests changed to disease prevention and treatment. Conclusion: This study provides meaningful clues regarding consumer perceptions and trends related to DSs before and after the COVID-19 pandemic and fundamental data on the effect of the pandemic on consumer interest in dietary supplements.

A study of changes in user experience and service evaluation - Topic modeling of Netflix app reviews (사용자 경험과 서비스 평가의 변화에 관한 연구 - 넷플릭스 앱 리뷰 토픽 모델링을 통해)

  • Seon Yeong Yu;Mi Jin Noh;Yang Sok Kim;Mu Moung Cho Han
    • Smart Media Journal
    • /
    • v.12 no.6
    • /
    • pp.27-34
    • /
    • 2023
  • As Netflix usage has increased due to the COVID-19 pandemic, users' experiences with the service have also increased. Therefore, this study aims to conduct topic modeling analysis based on Netflix review data to explore the changes in Netflix user experience and service before and after the COVID-19 pandemic. We collected Netflix app review data from the Google Play Store using the Google Play Scraper library, and used topic modeling to examine keyword differences between app reviews before and after the pandemic. The analysis revealed four main topics: Netflix app features, Netflix content, Netflix service usage, and Netflix overall reviews. After the pandemic, when user experience increased, users tended to use more diverse and detailed keywords in their reviews. By using Netflix review data to analyze users' opinions, this study shows the changes in user experience of Netflix services before and after the pandemic, which can be used as a guide to strengthen competitiveness in the competitive OTT market.

A Study on Keywords Extraction from Entertainment News using Bigdata Processing (빅데이터 처리를 통한 연예 뉴스에서의 키워드 추출에 관한 연구)

  • Yoo, Sang-Hyun;Lee, Sang-Jun
    • Jounal of The Korea Society of Information Technology Policy & Management
    • /
    • v.11 no.6
    • /
    • pp.1503-1507
    • /
    • 2019
  • With the softness of online entertainment news articles and the increasing number of quick-reporting articles in the entertainment sector, many people have access to entertainment front-page articles and are now able to make reviews of celebrities. It is not easy to systematically analyze which news articles are about which celebrities in a real-time environment, although their reputation is a key factor in the entertainment agency's business strategy, which should make the most of its affiliated celebrity resources. Based on the amount of celebrity references mentioned in entertainment news data, this paper proposes an entertainment news keyword analysis system, which extracts celebrities that are the subject of the article and associates them with the celebrity entertainment agency in question. Through the system proposed in this paper, advertisers or entertainment agencies can judge the value of the celebrity as reference material for the business. In addition, it can lay the groundwork for an investment strategy by predicting the outlook for the entertainment company for brokerages and investors.

Keyword Extraction through Text Mining and Open Source Software Category Classification based on Machine Learning Algorithms (텍스트 마이닝을 통한 키워드 추출과 머신러닝 기반의 오픈소스 소프트웨어 주제 분류)

  • Lee, Ye-Seul;Back, Seung-Chan;Joe, Yong-Joon;Shin, Dong-Myung
    • Journal of Software Assessment and Valuation
    • /
    • v.14 no.2
    • /
    • pp.1-9
    • /
    • 2018
  • The proportion of users and companies using open source continues to grow. The size of open source software market is growing rapidly not only in foreign countries but also in Korea. However, compared to the continuous development of open source software, there is little research on open source software subject classification, and the classification system of software is not specified either. At present, the user uses a method of directly inputting or tagging the subject, and there is a misclassification and hassle as a result. Research on open source software classification can also be used as a basis for open source software evaluation, recommendation, and filtering. Therefore, in this study, we propose a method to classify open source software by using machine learning model and propose performance comparison by machine learning model.

A Study on the Network Text Analysis about Oral Health in Aging-Well

  • Seol-Hee Kim
    • Journal of dental hygiene science
    • /
    • v.23 no.4
    • /
    • pp.302-311
    • /
    • 2023
  • Background: Oral health is an important element of well aging. And oral health also affects overall health, mental health, and quality of life. In this study, we sought to identify oral health influencing factors and research trends for well-aging through text analysis of research on well-aging and oral health over the past 12 years. Methods: The research data was analyzed based on English literature published in PubMed from 2012 to 2023. Aging well and oral health were used as search terms, and 115 final papers were selected. Network text analysis included keyword frequency analysis, centrality analysis, and cohesion structure analysis using the Net-Miner 4.0 program. Results: Excluding general characteristics, the most frequent keywords in 115 articles, 520 keywords (Mesh terms) were psychology, dental prosthesis and Alzheimer's disease, Dental caries, cognition, cognitive dysfunction, and bacteria. Research keywords with high degree centrality were Dental caries (0.864), Quality of life (0.833), Tooth loss (0.818), Health status (0.727), and Life expectancy (0.712). As a result of community analysis, it consisted of 4 groups. Group 1 consisted of chewing and nutrition, Group 2 consisted oral diseases, systemic diseases and management, Group 3 consisted oral health and mental health, Group 4 consisted oral frailty symptoms and quality of life. Conclusion: In an aging society, oral dysfunction affects mental health and quality of life. Preventing oral diseases for well-aging can have a positive impact on mental health and quality of life. Therefore, efforts are needed to prevent oral frailty in a super-aging society by developing and educating systematic oral care programs for each life cycle.

Definition, Scope, and Applications of Physiotherapy Biofeedback: Systematic Reviews (물리치료 바이오피드백의 정의 및 범위와 활용법: 체계적 문헌고찰 )

  • Jong-Seon Oh;Kyung-Jin Lee;Seong-Gil Kim
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.4
    • /
    • pp.109-119
    • /
    • 2023
  • PURPOSE: The definition and scope of biofeedback are broad and lack a clear framework. Therefore, efforts are needed to clearly understand the exact range and definition of biofeedback based on the research and development conducted to date. Thus, the purpose of this study was to arrive at the definition and scope of biofeedback through a literature review and analysis of its application methods. METHODS: This study is a systematic literature review conducted to understand the various types and effects of biofeedback. International databases such as Google Scholar and PubMed were used. Domestic databases utilized for keyword searches included the Research Information Sharing Service (RISS) and the National Digital Science Library (NDSL). Quality assessment of the selected studies in the selection process was done using the Cochrane risk of bias, and the research was analyzed according to the population, intervention, control, and outcomes (PICO) format. RESULTS: Studies conducted between 2019 and 2021 were selected, with 4 papers falling under physiological classifications and 7 under biomechanical classifications. The quality assessment results showed that random sequence generation, allocation concealment, performance bias, and reporting bias were unclear. Detection bias was moderate, and attrition bias and other biases were low. Out of the 11 papers, 9 dealt with physical function outcomes, 5 with daily life activities, and 3 with mental functions. CONCLUSION: Physiological biofeedback tended to influence psychological factors more than physical functions, while biomechanical biofeedback tended to have a positive impact on physical functions.