• Title/Summary/Keyword: Keyword-based

Search Result 1,126, Processing Time 0.028 seconds

A Study on Ontology Instance Generation Using Keywords (키워드를 활용한 온톨로지 인스턴스 생성에 관한 연구)

  • Han, Kwang-Rok;Kang, Hyun-Min;Sohn, Surg-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.5
    • /
    • pp.1-11
    • /
    • 2010
  • The success of semantic web depends largely on the semantic annotation which systematizes knowledge for the construction and production of ontology. Therefore, the efficiency of semantic annotation is very important in order to change many knowledge expressions and generate into ontology instances. In this paper, we presents a generation system of rule-based ontology instances which are produced accurately and efficiently via semantic annotation in conventional web sites. In conventional studies, the manual process is necessary for finding relevant information, comparing it with ontology, and entering information. We propose a new method that manages keyword data regarding extracted information and rule information separately. Thus, it is quite practical to extract information efficiently from various web documents by adding a small number of keywords and rules. The proposed method shows the possibility of ontology instance generation which reuses the rules and keywords from the various websites.

A Study on Monitoring Method of Citizen Opinion based on Big Data : Focused on Gyeonggi Lacal Currency (Gyeonggi Money) (빅데이터 기반 시민의견 모니터링 방안 연구 : "경기지역화폐"를 중심으로)

  • Ahn, Soon-Jae;Lee, Sae-Mi;Ryu, Seung-Ei
    • Journal of Digital Convergence
    • /
    • v.18 no.7
    • /
    • pp.93-99
    • /
    • 2020
  • Text mining is one of the big data analysis methods that extracts meaningful information from atypical large-scale text data. In this study, text mining was used to monitor citizens' opinions on the policies and systems being implemented. We collected 5,108 newspaper articles and 748 online cafe posts related to 'Gyeonggi Lacal Currency' and performed frequency analysis, TF-IDF analysis, association analysis, and word tree visualization analysis. As a result, many articles related to the purpose of introducing local currency, the benefits provided, and the method of use. However, the contents related to the actual use of local currency were written in the online cafe posts. In order to revitalize local currency, the news was involved in the promotion of local currency as an informant. Online cafe posts consisted of the opinions of citizens who are local currency users. SNS and text mining are expected to effectively activate various policies as well as local currency.

An Analysis on the Trends and Issues of Convergence Technology Research (네트워크 분석을 통한 국내 융합기술 연구동향 분석)

  • Lim, Jung-Yeon
    • Journal of Internet of Things and Convergence
    • /
    • v.4 no.1
    • /
    • pp.23-29
    • /
    • 2018
  • The purpose of study was to analyze the trends of 2005 to 2018 revised 'convergence technology research' through text network analysis using NetMiner4.0 program. Data analysis was conducted by using keyword analysis, centrality analysis of 653 authors' keyword from 177 journals. The results of the study are as follows. First, Research on Converging Technology has been studied steadily over the past 13 years in Department of Industry Convergence. Second, the results of the search term frequency analysis show that the 'convergence technology', 'technology convergence', 'convergence', 'design', 'convergence education', 'STEAM', 'convergence research' were used as the main keywords of convergence technology research. Third, Community analysis results show that five communities have been classified five categories according to the characteristics of the search terms 'only IT', 'Cultural industry utilizing Convergence contents', 'Technology innovation and research analysis' And patent development'. Based on these results, we proposed the future directions of convergence technology research.

GNUnet improvenemt for anonymity supporing in large multimedia file (대형 멀티미디어 파일의 익명성 지원을 위한 수정 GNUnet)

  • Lee Myoung-Hoon;Park Byung-Yeon;Jo In-June
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.81-90
    • /
    • 2006
  • The GNUnet proposed a file encoding method by 1KB block size to support anonimity of files, decentralizes encoded block to peers through unstructed mode and original data decoding method a block searching or encoded blocks. but, the encoding and block decentralizing method with $600\sim700MB$ large multimedia file appered two problems. First problem, it need addition R block and I block, which make about 4% of storage resource. Second problem, unstructured model added network load by broadcasting decentralizing method. Third problem, The critical point of keyword search function. This paper suggest variable encoding block size and structured model by block decentralizing solution. Suggested encoding method reduced block request supplementary block generation from 4% to 1%, network load by proposal structured model sending answer through dedicated peer to decentralize block and we defined content-based keyword and identifier of sharing file.

  • PDF

Retrieval Model using Subject Classification Table, User Profile, and LSI (전공분류표, 사용자 프로파일, LSI를 이용한 검색 모델)

  • Woo Seon-Mi
    • The KIPS Transactions:PartD
    • /
    • v.12D no.5 s.101
    • /
    • pp.789-796
    • /
    • 2005
  • Because existing information retrieval systems, in particular library retrieval systems, use 'exact keyword matching' with user's query, they present user with massive results including irrelevant information. So, a user spends extra effort and time to get the relevant information from the results. Thus, this paper will propose SULRM a Retrieval Model using Subject Classification Table, User profile, and LSI(Latent Semantic Indexing), to provide more relevant results. SULRM uses document filtering technique for classified data and document ranking technique for non-classified data in the results of keyword-based retrieval. Filtering technique uses Subject Classification Table, and ranking technique uses user profile and LSI. And, we have performed experiments on the performance of filtering technique, user profile updating method, and document ranking technique using the results of information retrieval system of our university' digital library system. In case that many documents are retrieved proposed techniques are able to provide user with filtered data and ranked data according to user's subject and preference.

The Method of Deriving Japanese Keyword Using Dependence (의존관계에 기초한 일본어 키워드 추출방법)

  • Lee, Tae-Hun;Jung, Kyu-Cheol;Park, Ki-Hong
    • The KIPS Transactions:PartB
    • /
    • v.10B no.1
    • /
    • pp.41-46
    • /
    • 2003
  • This thesis composes separated words in text for extracting keywords from Japanese, proposes extracting indexing keywords which consist of a compound noun using words and sentences information with the rules in the sentences. It constructs generative rules of compound nouns to be based In dependence as a result of analysing character of keywords in the text not the same way as before. To hold other extracting keywords and the content of sentence, and suggest how to decide importance concerned some restriction and repetition of words about generative rules. To verify the validity of keywords extracting, we have used titles and abstracts from Japanese thesis 65 files about natural language and/or voice processing, and obtain 63% in outputting one in the top rank.

Trend Analysis of Research Articles Published in the Korean Journal of Women Health Nursing from 2013 to 2017 (최근 4년간 여성건강간호학회지에 게재된 여성건강 관련 연구의 동향(2013~2017년))

  • Lee, Young Jin;Kim, Seo Yun;Kang, Saem Yi;Kang, Yoo Jeong;Jin, Lan;Jung, Hee Yoen;Kim, Hae Won
    • Women's Health Nursing
    • /
    • v.24 no.1
    • /
    • pp.90-103
    • /
    • 2018
  • Purpose: To analyze articles published in the Korean Journal of Women Health Nursing from 2013 to 2017 to determine the latest research trends and understand how 2013 Korea Women's Health Statistics were reflected in journal articles. Methods: A total of 130 studies were analyzed. Research design, types of research, research framework, research subjects, characteristics of quantitative research, characteristics of qualitative research, and keywords were analyzed using a structured analysis format. Results: Quantitative and qualitative research accounted for 83.8% and 13% of these 130 studies analyzed, respectively. Non-experimental and experimental research accounted for 70.7% and 13.1% of these studies, respectively. The most frequent study subjects were childbearing women (62.8%), including college students, mothers, and adults. A total of 69.1% of non-experimental research and 88.2% of experimental research used convenience sampling. Questionnaires were most frequently used for data collection. The most frequent keyword domain involved health-related concepts (41%) among nine domains and the most frequently used keyword was "women." Conclusion: This study suggest that further experimental research should be conducted in the future. Also, adolescent and the elderly women should be focused on as subjects in future studies based on results of 2013 Korean Women's Health Statistics.

Topic Modeling Analysis of Franchise Research Trends Using LDA Algorithm (LDA 알고리즘을 이용한 프랜차이즈 연구 동향에 대한 토픽모델링 분석)

  • YANG, Hoe-Chang
    • The Korean Journal of Franchise Management
    • /
    • v.12 no.4
    • /
    • pp.13-23
    • /
    • 2021
  • Purpose: This study aimed to derive clues for the franchise industry to overcome difficulties such as various legal regulations and social responsibility demands and to continuously develop by analyzing the research trends related to franchises published in Korea. Research design, data and methodology: As a result of searching for 'franchise' in ScienceON, abstracts were collected from papers published in domestic academic journals from 1994 to June 2021. Keywords were extracted from the abstracts of 1,110 valid papers, and after preprocessing, keyword analysis, TF-IDF analysis, and topic modeling using LDA algorithm, along with trend analysis of the top 20 words in TF-IDF by year group was carried out using the R-package. Results: As a result of keyword analysis, it was found that businesses and brands were the subjects of research related to franchises, and interest in service and satisfaction was considerable, and food and coffee were prominently studied as industries. As a result of TF-IDF calculation, it was found that brand, satisfaction, franchisor, and coffee were ranked at the top. As a result of LDA-based topic modeling, a total of 12 topics including "growth strategy" were derived and visualized with LDAvis. On the other hand, the areas of Topic 1 (growth strategy) and Topic 9 (organizational culture), Topic 4 (consumption experience) and Topic 6 (contribution and loyalty), Topic 7 (brand image) and Topic 10 (commercial area) overlap significantly. Finally, the trend analysis results for the top 20 keywords with high TF-IDF showed that 10 keywords such as quality, brand, food, and trust would be more utilized overall. Conclusions: Through the results of this study, the direction of interest in the franchise industry was confirmed, and it was found that it was necessary to find a clue for continuous growth through research in more diverse fields. And it was also considered an important finding to suggest a technique that can supplement the problems of topic trend analysis. Therefore, the results of this study show that researchers will gain significant insights from the perspectives related to the selection of research topics, and practitioners from the perspectives related to future franchise changes.

Comparison of Design Related Issues with the Replacement of Fashion Creative Director - Focused on an Analysis of Social Media Posts on Gucci Collection - (패션 크리에이티브 디렉터 변화에 따른 디자인 연관 이슈 비교 - 구찌 컬렉션에 대한 소셜미디어 게시글 분석을 중심으로 -)

  • An, Hyosun;Park, Minjung
    • Fashion & Textile Research Journal
    • /
    • v.21 no.3
    • /
    • pp.277-287
    • /
    • 2019
  • This study analyzes the online issues of design innovation by a fashion creative director. The study selected fashion house Gucci as the main subject and analyzed social media posts. As for study methods, a social matrix program Textom 2.0 collected 13,014 nouns and adjectives using 'Gucci Collection' as a search keyword from Naver Blogs from March to August 2014 and from March to August 2016. Design related issues were derived through semantic network analysis using Ucinet6 and the NetDraw program. The results of the keyword frequency analysis showed that social media user interest for the Gucci collection increased based on the rapid increase in the number of posts from 1,064 to 2,126 after changing the fashion creative director. The results of visualization of semantic network analysis and content analysis also showed that the main issues related to the Gucci collection design changed after the replacement of the fashion creative director. The study found that issues formed around the product information worn by celebrities for promotion purposes during the 2014 period; however, during the 2016 period, issues were formed around 'vintage' and 'retro' runway concepts with design styles related to Alessandro Michele, the new creative director.

Application of Social Big Data Analysis for CosMedical Cosmetics Marketing : H Company Case Study (기능성 화장품 마케팅의 소셜 빅데이터 분석 활용 : H사 사례를 중심으로)

  • Hwang, Sin-Hae;Ku, Dong-Young;Kim, Jeoung-Kun
    • Journal of Digital Convergence
    • /
    • v.17 no.7
    • /
    • pp.35-41
    • /
    • 2019
  • This study aims to analyze the cosmedical cosmetics market and the nature of customer through the social big data analysis. More than 80,000 posts were analyzed using R program. After data cleansing, keyword frequency analysis and association analysis were performed to understand customer needs and competitor positioning, formulated several implications for marketing strategy sophistication and implementation. Analysis results show that "prevention" is a new and essential attribute for appealing target customers. The expansion of the product line for the gift market is also suggested. It has been shown that there is a high correlation with products that can be complementary to each other. In addition to the traditional marketing technique, the social big data analysis based on evidence was useful in deriving the characteristics of the customers and the market that had not been identified before. Word2vec algorithm will be beneficial to find additional.