• Title/Summary/Keyword: Keyword-based

Search Result 1,126, Processing Time 0.025 seconds

Improving the Yield of Semiconductor Manufacturing Processes using Clustering Analysis and Response Surface Method (군집분석 및 반응표면분석법을 활용한 반도체 공정 수율향상에 관한 연구)

  • Koh, Kwan Ju;Kim, Na Yeon;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.2
    • /
    • pp.381-395
    • /
    • 2019
  • Purpose: This study aims to conduct a systematic literature review to suitably identify wide and specific issues and topics on service quality in supply chain. Methods: This study is to investigate service quality in supply chain research using a systematic literature review methodology. In order to extract influential journals and papers, we used the SJR impact factor provided by the SCOPUS database. The collected 169 papers were analyzed using bibliometric analysis, citation analysis as well as keywords network. Results: We conducted a bibliometric analysis to identify top authors contributing to service quality in supply chain and their issues, and further examined important keywords and new emerging keywords. In addition, we extracted five influential papers by PageRank to clarify critical issues and divided into five clusters to identify topics of service quality in supply chain by using network-based approach. In order to examine comprehensive issues and topics of service quality in supply chain, we constructed a keyword network to observe difference in the classification of important keywords across network centrality measures. Conclusion: Our study reviewed literature on service quality in supply chain and explored the future directions and trends of service quality in supply chain.

COVID19 Related Keyword Analysis: Based on Topic Modeling and Semantic Network Analysis (코로나19 관련 키워드 분석: 토픽 모델링과 의미 연결망 네트워크 분석을 중심으로)

  • Kim, Dong-wook;Lee, Min-sang;Jeong, Jae-young;Kim, Hyun-chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.127-132
    • /
    • 2022
  • In the era of COVID-19 pandemic, COVID related keywords, news and SNS data are pouring out. With the help of the data and LDA topic modeling, we can check out what media reports about COVID-19 and vaccines. Also, we can be clear how the public reacts to the vaccine on social media and how this is related with the increasing number of COVID-19 patients. By using sentimental analysis methodology, we can get to know about the different kinds of reports that Korea media send out and get to know what kind of emotions that each media company uses in majority. Through this procedure, we can know the difference between the Korean media and the foreign ones. Ultimately, we can find and analyze the keyword that suddenly rose during the COVID-19 period throughout this research.

A study on changes in the food service industry about keyword before and after COVID-19 using big data

  • Jung, Sukjoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.85-90
    • /
    • 2022
  • In this study, keywords from representative online portal sites such as NAVER, Google, and Youtube were collected based on text mining analysis technique using TEXTOM to check the changes in the restaurant industry before and after COVID-19. The collection keywords were selected as dining out, food service industry, and dining out culture. For the collected data, the top 30 words were derived, respectively, through the refinement process. In addition, comparative analysis was conducted by defining data from 2018 to 2019 before COVID-19, and from 2020 to 2021 after COVID-19. As a result, 8272 keywords before COVID-19 and 9654 keywords after COVID-19, a total of 17926 keywords, were derived. In order for the food service industry to develop after the COVID-19 pandemic, it is necessary to commercialize the recipes of restaurants to revitalize the distribution of home-use food products that replace home-cooked meals such as meal kits. Due to the social distancing caused by COVID-19, the dining out culture has changed and the trend has changed, and it has been confirmed that the consumption culture has changed to eating and delivering at home more safely than visiting restaurants. In addition, it has been confirmed that the consumption culture of existing consumers is changing to a trend of cooking at home rather than visiting restaurants.

A Study on the Current Status of Supply Chain Risks after COVID-19: Focusing on Network Analysis (코로나19 이후 공급사슬 리스크에 대한 현황연구: 네트워크 분석을 중심으로)

  • EuiBeom Jeong;Keontaek Oh
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.4
    • /
    • pp.77-92
    • /
    • 2023
  • In this study, keyword network analysis was performed based on global and domestic journals, and network text analysis was conducted for news and articles to examine major issues and research trends on supply chain risks after COVID-19. As a result of analyzing the supply chain risk, after COVID-19 which was relatively insufficient in previous studies, research trends and topics such as supply chain risk recovery, response and public welfare, which are different from previous previous studies, were found in global and domestic journals, news and articles and it was possible to suggest practical strategies and insights for supply chain risk strategies for firms.

Analysis on Types of Golf Tourism After COVID-19 by using Big Data

  • Hyun Seok Kim;Munyeong Yun;Gi-Hwan Ryu
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.1
    • /
    • pp.270-275
    • /
    • 2024
  • Introduction. In this study, purpose is to analize the types of golf tourism, inbound or outbound, by using big data and see how movement of industry is being changed and what changes have been made during and after Covid-19 in golf industry. Method Using Textom, a big data analysis tool, "golf tourism" and "Covid-19" were selected as keywords, and search frequency information of Naver and Daum was collected for a year from 1 st January, 2023 to 31st December, 2023, and data preprocessing was conducted based on this. For the suitability of the study and more accurate data, data not related to "golf tourism" was removed through the refining process, and similar keywords were grouped into the same keyword to perform analysis. As a result of the word refining process, top 36 keywords with the highest relevance and search frequency were selected and applied to this study. The top 36 keywords derived through word purification were subjected to TF-IDF analysis, visualization analysis using Ucinet6 and NetDraw programs, network analysis between keywords, and cluster analysis between each keyword through Concor analysis. Results By using big data analysis, it was found out option of oversea golf tourism is affecting on inbound golf travel. "Golf", "Tourism", "Vietnam", "Thailand" showed high frequencies, which proves that oversea golf tour is now the re-coming trends.

A Hybrid Collaborative Filtering-based Product Recommender System using Search Keywords (검색 키워드를 활용한 하이브리드 협업필터링 기반 상품 추천 시스템)

  • Lee, Yunju;Won, Haram;Shim, Jaeseung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.151-166
    • /
    • 2020
  • A recommender system is a system that recommends products or services that best meet the preferences of each customer using statistical or machine learning techniques. Collaborative filtering (CF) is the most commonly used algorithm for implementing recommender systems. However, in most cases, it only uses purchase history or customer ratings, even though customers provide numerous other data that are available. E-commerce customers frequently use a search function to find the products in which they are interested among the vast array of products offered. Such search keyword data may be a very useful information source for modeling customer preferences. However, it is rarely used as a source of information for recommendation systems. In this paper, we propose a novel hybrid CF model based on the Doc2Vec algorithm using search keywords and purchase history data of online shopping mall customers. To validate the applicability of the proposed model, we empirically tested its performance using real-world online shopping mall data from Korea. As the number of recommended products increases, the recommendation performance of the proposed CF (or, hybrid CF based on the customer's search keywords) is improved. On the other hand, the performance of a conventional CF gradually decreased as the number of recommended products increased. As a result, we found that using search keyword data effectively represents customer preferences and might contribute to an improvement in conventional CF recommender systems.

Analysis of major research trends in artificial intelligence based on domestic/international patent data (국내외 특허데이터 기반의 인공지능분야 기술동향 분석)

  • Chung, Myoung Sug;Jeong, So-Hee;Lee, Joo Yeoun
    • Journal of Digital Convergence
    • /
    • v.16 no.6
    • /
    • pp.187-195
    • /
    • 2018
  • Recently, the 4th industrial revolution has emerged as the core for enhancing national competitiveness, the development of a technology roadmap to efficiently develop related technologies to realize super intelligence as a main feature of the 4th Industrial Revolution is a major task has been highlighted. The objective of this study is to analyze the domestic and foreign technology level in the artificial intelligence field which is the core technology of the 4th Industrial Revolution era and to present the direction of development based on this. The keyword network analysis and the blank technical analysis based on the IPC classification were performed on the data derived from the keyword search of 'AI (Artificial Intelligence)' among domestic and foreign patent data. As a result, the number of domestic artificial intelligence related technology development was 1.2% compared with developed countries such as USA and Europe. In the major development fields, data recognition technology and digital information transmission technology were relatively insufficient. Through this study, we obtained the blank technology as a result of comparative analysis of domestic artificial intelligence related technologies compared to advanced countries and suggested the direction of domestic artificial intelligence technology development in future.

An Analysis of Key Words Related to Traditional Korean Medicine Using Big Data of Two Search Engines (2대 포털사이트 빅데이터를 이용한 한방관련 키워드 분석)

  • Ahn, Jung-Yun;Keum, Ga-Jeong;Jang, Ah-Ryeong;Song, Ji-Chung
    • The Journal of Korean Medical History
    • /
    • v.30 no.2
    • /
    • pp.45-61
    • /
    • 2017
  • Objectives : This research aims to investigate the consumer's interest in the Korean Medicine (KM) industry by using Google-trends and Naver-Data lab. A quick and uncomplicated way for those who are already involved with KM industry but do not have expertise in utilizing Big-data searches, is introduced. Methods : 'Direct keyword' was set by FGI (Focus Group Interview) and 'Detailed keyword' was set by using relevant word search and autocomplete search functions in the search engine. By inquiring Naver-Data lab, keyword search volumes are compared by age and sex, date range, and originating region of the researcher. It is possible to determine whether the data is reliable or authentic through examining the associated query. Selected direct keywords used through FGI (Focus Group Interview) were 'Acupuncture', 'Herbal Medicine', 'Cupping', 'Musculoskeletal Disease', 'Diet', and 'Stemina'. Based on these keywords, the following results were derived from the keyword analysis. Results : From August 2016, there was a noticeable surge of interest in men's 'Cupping'. The search for 'Diet' increased in the second quarter of 2016 from all ages. The search volume of 'Stemna' for individuals in their 20s is higher than that of those in their 30s or 40s'. Researchers from the region of Chungcheongbuk-do had a higher level of interest in analgesics and less interest in Korean Medicine. There is a greater interest in the KM market from European countries and America, than from Korea, China, and other Asian countries. Discussion : Despite the limitations of the research, it is meaningful to introduce a quick and easy data search method to compare information by age, sex, and region. Conclusion : The future of research into Korea Medicine and this market is confirmed by our data results which indicate interest from Europe, the United States, and other western countries, but less interest from Korea, China and other Asian countries.

A Study on Using Rhetoric for Graphical Ideation Tools (수사법을 활용한 그래픽 발상툴 연구)

  • Han, Ki-Beom;Kim, Maeng-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.10
    • /
    • pp.598-607
    • /
    • 2016
  • The purpose of this study is to suggest necessity of idea expression method suitable for people in our country and deduct Graphic Ideation method by grasping problems of existing idea expression method. The idea expression method (association stimulating method, conceptual shifting method, information combination method) used by many graphic designers is effective in suggesting initial keyword, but has difficulty in the course of deducting the concept. Though deduction of core keyword is important to develop as a concept, the course of separation, combination in keyword connection play an important role, and most of idea expression methods are unavailable for suggesting concrete method for the course. Also as most of idea expression methods were developed and delivered in English-speaking world, it is suitable in English-speaking world culture which has thinking focused on words, but people in our country, which have thinking focusing on narration, cannot consider difference in language thinking due to limitation in idea for each stage. This study deducted idea expression method suitable for emotion of people in our country by proving the value of this idea expression method with style of suggesting and demonstrating 4 hypotheses in order to make the course for easy connection, separation, combination of keyword deducted by existing idea expression method, as well as suggesting idea expression method design based on these hypotheses. This idea expression method used rhetoric so that it is suitable for people our country who are strong for narration expression.

A Study On Technical Trend Analysis Related to Semantic Analysis of NLP Through Domestic/Foreign Patent Data (국내외 특허데이터 분석을 통한 자연어처리의 의미분석 관련 기술동향 분석에 대한 연구)

  • Hyun, Young-Geun;Han, Jeong-Hyeon;Chae, Uri;Lee, Gi-Hyun;Lee, Joo-Yeoun
    • Journal of Digital Convergence
    • /
    • v.18 no.1
    • /
    • pp.137-146
    • /
    • 2020
  • NLP means the technology that mechanically analyzes a language spoken by a human and makes it into a form that can be understood by a computer. This is important because it is a core technology for communication between humans and devices, which is the basis of artificial intelligence. In this paper, I analyzed patent information of US and Korea in order to identify technical trends related to NLP, especially semantic analysis. and the purpose of this study is to provide meaningful information for future research on NLP. In conclusion, the number of Korea patents is 7.9% compared to the USA and the different frequencies of the major keywords were found to differ from country to country in technical direction. In addition, the upward or downward keywords are twice as many in the U.S. as in Korea, and reflect the trend of the times relatively more. Based on these results, in future study, I will analysis how upward trending keywords are described in actual patents for concrete technology prediction.