• Title/Summary/Keyword: Keyword-based

Search Result 1,126, Processing Time 0.031 seconds

A Study on Hypertext-based Bibliographic Information Retrieval System Using Internet (인터넷을 이용한 하이퍼텍스트 기반 서지정보검색 시스템에 관한 연구)

  • 박지연
    • Journal of the Korean Society for information Management
    • /
    • v.12 no.2
    • /
    • pp.171-192
    • /
    • 1995
  • In this study, we constructed a hypertext-based bibliographic information retrieval system, which is very usell tool to browse and retrieve structured data. We minimized the problem of the use; s disorientation with the keyword retrieval technique. We also presented the potential advantages of this system which could be obtained by implementing it on WWW.

  • PDF

A Scalable Index for Content-based Retrieval of Large Scale Multimedia Data (대용량 멀티미디어 데이터의 내용 기반 검색을 위한 고확장 지원 색인 기법)

  • Choi, Hyun-HWa;Lee, Mi-Young;Lee, Kyu-Chul
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.726-730
    • /
    • 2009
  • The proliferation of the web and digital photography has drastically increased multimedia data and has resulted in the need of the high quality internet service based on the moving picture like user generated contents(UGC). The keyword-based search on large scale images and video collections is too expensive and requires much manual intervention. Therefore the web search engine may provide the content-based retrieval on the multimedia data for search accuracy and customer satisfaction. In this paper, we propose a novel distributed index structure based on multiple length signature files according to data distribution. In addition, we describe how our scalable index technique can be used to find the nearest neighbors in the cluster environments.

  • PDF

A study on Similarity analysis of National R&D Programs using R&D Project's technical classification (R&D과제의 기술분류를 이용한 사업간 유사도 분석 기법에 관한 연구)

  • Kim, Ju-Ho;Kim, Young-Ja;Kim, Jong-Bae
    • Journal of Digital Contents Society
    • /
    • v.13 no.3
    • /
    • pp.317-324
    • /
    • 2012
  • Recently, coordination task of similarity between national R&D programs is emphasized on view from the R&D investment efficiency. But the previous similarity search method like text-based similarity search which using keyword of R&D projects has reached the limit due to deviation of document's quality. For the solve the limitations of text-based similarity search using the keyword extraction, in this study, utilization of R&D project's technical classification will be discussed as a new similarity search method when analyzed of similarity between national R&D programs. To this end, extracts the Science and Technology Standard Classification of R & D projects which are collected when national R&D Survey & analysis, and creates peculiar vector model of each R&D programs. Verify a reliability of this study by calculate the cosine-based and Euclidean distance-based similarity and compare with calculated the text-based similarity.

Developing and Evaluating an Ontology-based Legal Retrieval System (온톨로지 기반 법률 검색시스템의 구축 및 평가에 관한 연구)

  • Chang, In-Ho
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.45 no.2
    • /
    • pp.345-366
    • /
    • 2011
  • The law affects our daily lives, and hence, constitutes a crucial information resource. However, electronic access to legal information using keyword-based retrieval systems appears to provide users with limited satisfaction. There are many factors behind this inadequacy. First, the discrepancies between formal legal terms and their counterparts in common language are quite large. Second, the situation is further confounded by frequent abbreviations in legal terms. Third, even though there is a constant deluge of legal information, users' needs have evolved to demand more Q and A type searches. All of these factors make the existing retrieval systems inefficient and ineffective. This article suggests an ontology-based system as a means to deal with such difficulties. To that end, a legal retrieval system(experimental system), built on the basis of a newly-constructed law ontology, was tested against a keyword-based legal retrieval system(existing one), yielding data on their relative effectiveness in retrieval and user satisfaction.

Research Trend Analysis of 'International Commerce and Information Review' Using SNA-based Keyword Network Analysis (SNA 기반 키워드 네트워크 분석을 활용한 '통상정보연구'의 연구동향 분석)

  • Yang, Kunwoo
    • International Commerce and Information Review
    • /
    • v.19 no.1
    • /
    • pp.23-42
    • /
    • 2017
  • International Commerce and Information Review has been playing an important role of disseminating the outstanding research results in the fields such as trade information and systems, e-trade, regional studies, e-commerce, service trade, trade laws since 1999. This paper aims to find the research trends and distinguished characteristics in the field of trade information by analyzing research keywords of the research papers published in this journal using a social network analysis method. Research keyword data collected from the homepage of the academic society were cleaned and transformed into the co-occurrence network data, which are suitable for social network analysis. NodeXL Pro was used to analyze and visualize the pre-processed data. Through clustering analysis, the most important subject fields or interests were identified as well as those which worked as intermediaries for interdisciplinary researches.

  • PDF

Fraud Click Identification Using Fingerprinting Method (핑거프린팅 기법을 이용한 부정 클릭의 식별)

  • Hong, Young-Ran;Kim, Dong-Soo
    • The Journal of Society for e-Business Studies
    • /
    • v.16 no.3
    • /
    • pp.159-168
    • /
    • 2011
  • To identify fraud clicks in the Internet advertisement, existing studies have considered keyword, visit time, and client IP as an independent variable for the standard. These methods have limitations in identifying the fraud clicks that utilize automation tools, for they are methods based on client IP and human activities on the Internet. This paper proposes that fingerprinting values of the variable combination should be used to identify fraud clicks. The proposed model is composed of 3 stages and the fingerprinting values are compared with the other input data at each stage; IP fingerprinting in the first stage, IP and session data fingerprinting in the second stage, and session data and keyword fingerprinting in the third stage. We showed that the proposed model of the fraud click identification is more correct than existing methods through experiments according to the proposed scheme.

Keyword Analysis of Two SCI Journals on Rock Engineering by using Text Mining (텍스트 마이닝을 이용한 암반공학분야 SCI논문의 주제어 분석)

  • Jung, Yong-Bok;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.303-319
    • /
    • 2015
  • Text mining is one of the branches of data mining and is used to find any meaningful information from the large amount of text. In this study, we analyzed titles and keywords of two SCI journals on rock engineering by using text mining to find major research area, trend and associations of research fields. Visualization of the results was also included for the intuitive understanding of the results. Two journals showed similar research fields but different patterns in the associations among research fields. IJRMMS showed simple network, that is one big group based on the keyword 'rock' with a few small groups. On the other hand, RMRE showed a complex network among various medium groups. Trend analysis by clustering and linear regression of keyword - year frequency matrix provided that most of the keywords increased in number as time goes by except a few descending keywords.

Effective Keyword Search on Semantic RDF Data (시맨틱 RDF 데이터에 대한 효과적인 키워드 검색)

  • Park, Chang-Sup
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.11
    • /
    • pp.209-220
    • /
    • 2017
  • As a semantic data is widely used in various applications such as Knowledge Bases and Semantic Web, needs for effective search over a large amount of RDF data have been increasing. Previous keyword search methods based on distinct root semantics only retrieve a set of answer trees having different root nodes. Thus, they often find answer trees with similar meanings or low query relevance together while those with the same root node cannot be retrieved together even if they have different meanings and high query relevance. We propose a new method to find diverse and relevant answers to the query by permitting duplication of root nodes among them. We present an efficient query processing algorithm using path indexes to find top-k answers given a maximum amount of root duplication a set of answer trees can have. We show by experiments using a real dataset that the proposed approach can produce effective answer trees which are less redundant in their content nodes and more relevant to the query than the previous method.

A Study on Recognition of Artificial Intelligence Utilizing Big Data Analysis (빅데이터 분석을 활용한 인공지능 인식에 관한 연구)

  • Nam, Soo-Tai;Kim, Do-Goan;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.129-130
    • /
    • 2018
  • Big data analysis is a technique for effectively analyzing unstructured data such as the Internet, social network services, web documents generated in the mobile environment, e-mail, and social data, as well as well formed structured data in a database. The most big data analysis techniques are data mining, machine learning, natural language processing, and pattern recognition, which were used in existing statistics and computer science. Global research institutes have identified analysis of big data as the most noteworthy new technology since 2011. Therefore, companies in most industries are making efforts to create new value through the application of big data. In this study, we analyzed using the Social Matrics which a big data analysis tool of Daum communications. We analyzed public perceptions of "Artificial Intelligence" keyword, one month as of May 19, 2018. The results of the big data analysis are as follows. First, the 1st related search keyword of the keyword of the "Artificial Intelligence" has been found to be technology (4,122). This study suggests theoretical implications based on the results.

  • PDF

A Study on the Research Trend Analysis of AEO Certification System through SNA Analysis (SNA분석을 통한 AEO 인증제도 연구동향 분석에 관한 연구)

  • Kim, Jin-Wook;Yang, Tae-Hyeon;Kim, Dong-Myung;Yeo, Gi-Tae
    • Journal of Digital Convergence
    • /
    • v.18 no.2
    • /
    • pp.47-56
    • /
    • 2020
  • The purpose of this study was to identify the research trends and characteristics of existing research related to the AEO system. The methodology of the study was to utilize the Degree Centrality, Closeness Centrality and Betweenness Centrality presented by the Social Network Analysis (SNA). Keyword network analysis results showed that "MRA", "Logistics Security" were derived from the Degree Centrality results, "MRA", "Logistics Security" from the Closeness Centrality results, and, as a result of the Betweenness Centrality, "AEO Utilization Benefits" and "reliability" were derived from the top keyword results. The analysis of differences in centrality by period also confirmed that trends in research have changed based on specific time points. This study has implications for the study in that it presented worldwide research trends through keyword network analysis of the AEO system.