• Title/Summary/Keyword: Keyword-based

Search Result 1,126, Processing Time 0.028 seconds

Changes in the Cultural Trend of Use by Type of Green Infrastructure Before and After COVID-19 Using Blog Text Mining in Seoul

  • Chae, Jinhae;Cho, MinJoon
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.4
    • /
    • pp.415-427
    • /
    • 2021
  • Background and objective: This study examined the changes in the cultural trend of use for green infrastructure in Seoul due to COVID-19 pandemic. Methods: The subjects of this study are 8 sites of green infrastructure selected by type: Forested green infrastructure, Watershed green infrastructure, Park green infrastructure, Walkway green infrastructure. The data used for analysis was blog posts for a total of four years from August 1, 2016 to July 31, 2020. The analysis method was conducted keyword frequency analysis, topic modeling, and related keyword analysis. Results: The results of this study are as follows. First, the number of posts on green infrastructure has increased since COVID-19, especially forested green infrastructure and watershed green infrastructure with abundant naturalness and high openness. Second, the cultural trend keywords before and after COVID-19 changed from large-scale to small-scale, community-based to individual-based activities, and nondaily to daily culture. Third, after COVID-19, topics and keywords related to coronavirus showed that the cultural trends were reflected on appreciation, activities, and dailiness based on natural resources. In sum, the interest in green infrastructure in Seoul has increased after COVID-19. Also, the change of green infrastructure represents the increased demand for experience that reflects the need and expectation for nature. Conclusion: The new trend of green Infrastructure in the pandemic era should be considered in the the individual relaxations & activities.

A Study on the Rejection Capability Based on Anti-phone Modeling (반음소 모델링을 이용한 거절기능에 대한 연구)

  • 김우성;구명완
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.3-9
    • /
    • 1999
  • This paper presents the study on the rejection capability based on anti-phone modeling for vocabulary independent speech recognition system. The rejection system detects and rejects out-of-vocabulary words which were not included in candidate words which are defined while the speech recognizer is made. The rejection system can be classified into two categories by their implementation methods, keyword spotting method and utterance verification method. The keyword spotting method uses an extra filler model as a candidate word as well as keyword models. The utterance verification method uses the anti-models for each phoneme for the calculation of confidence score after it has constructed the anti-models for all phonemes. We implemented an utterance verification algorithm which can be used for vocabulary independent speech recognizer. We also compared three kinds of means for the calculation of confidence score, and found out that the geometric mean had shown the best result. For the normalization of confidence score, usually Sigmoid function is used. On using it, we compared the effect of the weight constant for Sigmoid function and determined the optimal value. And we compared the effects of the size of cohort set, the results showed that the larger set gave the better results. And finally we found out optimal confidence score threshold value. In case of using the threshold value, the overall recognition rate including rejection errors was about 76%. This results are going to be adapted for stock information system based on speech recognizer which is currently provided as an experimental service by Korea Telecom.

  • PDF

Automatic Keyword Extraction using Hierarchical Graph Model Based on Word Co-occurrences (단어 동시출현관계로 구축한 계층적 그래프 모델을 활용한 자동 키워드 추출 방법)

  • Song, KwangHo;Kim, Yoo-Sung
    • Journal of KIISE
    • /
    • v.44 no.5
    • /
    • pp.522-536
    • /
    • 2017
  • Keyword extraction can be utilized in text mining of massive documents for efficient extraction of subject or related words from the document. In this study, we proposed a hierarchical graph model based on the co-occurrence relationship, the intrinsic dependency relationship between words, and common sub-word in a single document. In addition, the enhanced TextRank algorithm that can reflect the influences of outgoing edges as well as those of incoming edges is proposed. Subsequently a novel keyword extraction scheme using the proposed hierarchical graph model and the enhanced TextRank algorithm is proposed to extract representative keywords from a single document. In the experiments, various evaluation methods were applied to the various subject documents in order to verify the accuracy and adaptability of the proposed scheme. As the results, the proposed scheme showed better performance than the previous schemes.

Multimedia Information Retrieval Using Semantic Relevancy (의미적 연관성을 이용한 멀티미디어 정보 검색)

  • Park, Chang-Sup
    • Journal of Internet Computing and Services
    • /
    • v.8 no.5
    • /
    • pp.67-79
    • /
    • 2007
  • As the Web technologies and wired/wireless network are improved and various new multimedia services are introduced recently, need for searching multimedia including video data has been much increasing, The previous approaches for multimedia retrieval, however, do not make use of the relationships among semantic concepts contained in multimedia contents in an efficient way and provide only restricted search results, This paper proposes a multimedia retrieval system exploiting semantic relevancy of multimedia contents based on a domain ontology, We show the effectiveness of the proposed system by experiments on a prototype system we have developed. The proposed multimedia retrieval system can extend a given search keyword based on the relationships among the semantic concepts in the ontology and can find a wide range of multimedia contents having semantic relevancy to the input keyword. It also presents the results categorized by the semantic meaning and relevancy to the keyword derived from the ontology. Independency of domain ontology with respect to metadata on the multimedia contents is preserved in the proposed system architecture.

  • PDF

Hierarchical Automatic Classification of News Articles based on Association Rules (연관규칙을 이용한 뉴스기사의 계층적 자동분류기법)

  • Joo, Kil-Hong;Shin, Eun-Young;Lee, Joo-Il;Lee, Won-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.6
    • /
    • pp.730-741
    • /
    • 2011
  • With the development of the internet and computer technology, the amount of information through the internet is increasing rapidly and it is managed in document form. For this reason, the research into the method to manage for a large amount of document in an effective way is necessary. The conventional document categorization method used only the keywords of related documents for document classification. However, this paper proposed keyword extraction method of based on association rule. This method extracts a set of related keywords which are involved in document's category and classifies representative keyword by using the classification rule proposed in this paper. In addition, this paper proposed the preprocessing method for efficient keywords creation and predicted the new document's category. We can design the classifier and measure the performance throughout the experiment to increase the profile's classification performance. When predicting the category, substituting all the classification rules one by one is the major reason to decrease the process performance in a profile. Finally, this paper suggested automatically categorizing plan which can be applied to hierarchical category architecture, extended from simple category architecture.

Research Trends of U-City Theses in Korea and Oversea (국내.외 U-City 논문의 연구동향)

  • Kim, Kirl;Chun, Joung-Yoon;Shin, Dong-Bin;Lim, Si-Yeong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.1
    • /
    • pp.53-61
    • /
    • 2011
  • The purpose of this study is to suggest development directions and elicit future research themes of U-City and future city by identifying the research trends of U-City theses. For this, meta-keywords were elicited based on the theses of U-City and future city published from mid 1990s to 2010. Centered on the meta-keywords, temporal keyword analysis was performed to compare the research trends of U-City and future city theses in Korea and oversea. The results show that most of U-City and future theses in Korea and oversea mainly dealt with technology. U-City theses in Korea have a tendency to research technology, methodology, service, planning and management in order from the early beginning. However, the U-City and future theses in oversea have a tendency to continuously study U-City applications to city through the model based on the technology and methodology. Therefore, the U-City research in Korea should focus on aspects of urban regeneration, urban scale, and so on. That is to say, the research in near future is required to apply the U-City to various urban themes.

Improving Diversity of Keyword Search on Graph-structured Data by Controlling Similarity of Content Nodes (콘텐트 노드의 유사성 제어를 통한 그래프 구조 데이터 검색의 다양성 향상)

  • Park, Chang-Sup
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.3
    • /
    • pp.18-30
    • /
    • 2020
  • Recently, as graph-structured data is widely used in various fields such as social networks and semantic Webs, needs for an effective and efficient search on a large amount of graph data have been increasing. Previous keyword-based search methods often find results by considering only the relevance to a given query. However, they are likely to produce semantically similar results by selecting answers which have high query relevance but share the same content nodes. To improve the diversity of search results, we propose a top-k search method that finds a set of subtrees which are not only relevant but also diverse in terms of the content nodes by controlling their similarity. We define a criterion for a set of diverse answer trees and design two kinds of diversified top-k search algorithms which are based on incremental enumeration and A heuristic search, respectively. We also suggest an improvement on the A search algorithm to enhance its performance. We show by experiments using real data sets that the proposed heuristic search method can find relevant answers with diverse content nodes efficiently.

A Comparative Study between Ubiquitous City Comprehensive Plan and Ubiquitous City Plan - Focusing on U-Service Plan (유비쿼터스도시종합계획과 유비쿼터스도시계획 비교 연구 -U-서비스 계획을 중심으로-)

  • Yoo, Ji Song;Jeong, Da Woon;Yi, Mi Sook;Min, Kyung Ju
    • Spatial Information Research
    • /
    • v.23 no.2
    • /
    • pp.83-93
    • /
    • 2015
  • U-Services, which are offered from local governments based on their Ubiquitous City Plans, are only focused on facility and urban management services. Also Citizen oriented U-service is only planned. This study's purpose is to propose the implication for provide of the Citizen oriented U-service comparing with U-Service plan of 'Ubiquitous City Comprehensive Plan' and 'Ubiquitous City Plan' through a network text analysis and word frequency analysis. It was calculated a important keyword that was extracted the service plan contents of the 'Ubiquitous City Comprehensive Plan' and 'Ubiquitous City Plan' of the four local governments. The network text analysis and keyword frequency analysis was performed through derived keyword. Based on the analysis results, awareness of the citizens can be expected to increase about U-City by activating a excavation of Citizen oriented U-service in a variety of sector through additional services and policy of financial support in the next Ubiquitous City Comprehensive Plan.

An Improvement study in Keyword-centralized academic information service - Based on Recommendation and Classification in NDSL - (키워드 중심 학술정보서비스 개선 연구 - NDSL 추천 및 분류를 중심으로 -)

  • Kim, Sun-Kyum;Kim, Wan-Jong;Lee, Tae-Seok;Bae, Su-Yeong
    • Journal of Korean Library and Information Science Society
    • /
    • v.49 no.4
    • /
    • pp.265-294
    • /
    • 2018
  • Nowadays, due to an explosive increase in information, information filtering is very important to provide proper information for users. Users hardly obtain scholarly information from a huge amount of information in NDSL of KISTI, except for simple search. In this paper, we propose the service, PIN to solve this problem. Pin provides the word cloud including analyzed users' and others' interesting, co-occurence, and searched keywords, rather than the existing word cloud simply consisting of all keywords and so offers user-customized papers, reports, patents, and trends. In addition, PIN gives the paper classification in NDSL according to keyword matching based classification with the overlapping classification enabled-academic classification system for better search and access to solve this problem. In this paper, Keywords are extracted according to the classification from papers published in Korean journals in 2016 to design classification model and we verify this model.

A Study on Major Issues of Artificial Intelligence Using Keyword Analysis of Papers: Focusing on KCI Journals in the Field of Social Science (논문 키워드 분석을 통한 인공지능의 주요 이슈에 관한 고찰 : 사회과학 분야의 KCI 등재학술지를 중심으로)

  • Chung, Do-Bum;You, Hwasun;Mun, Hee Jin
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.1-9
    • /
    • 2022
  • Today, artificial intelligence (AI) has emerged as a key driver of national competitiveness, but it is also causing unexpected side effects in society. This study intends to examine major social issues by collecting papers on AI targeting KCI journals in the field of social science. Therefore, we conducted keyword analysis of papers from 2016 to 2020. As a result of the analysis, the keywords for 'robot' and 'education' appeared the most, and the top six clusters (issues) were derived through the keyword network. The main issues are as follows: the background and/or basic concept of AI, AI education, side effects of AI, legal issues of AI-based creations, intention to use AI products/services, and AI ethics. The results of this study can be used to expand the discussion on the social aspects of AI and to find policy directions at the national level.