• Title/Summary/Keyword: Keyword-based

Search Result 1,126, Processing Time 0.027 seconds

A Design and Implementation of a Content_Based Image Retrieval System using Color Space and Keywords (칼라공간과 키워드를 이용한 내용기반 화상검색 시스템 설계 및 구현)

  • Kim, Cheol-Ueon;Choi, Ki-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.6
    • /
    • pp.1418-1432
    • /
    • 1997
  • Most general content_based image retrieval techniques use color and texture as retrieval indices. In color techniques, color histogram and color pair based color retrieval techniques suffer from a lack of spatial information and text. And This paper describes the design and implementation of content_based image retrieval system using color space and keywords. The preprocessor for image retrieval has used the coordinate system of the existing HSI(Hue, Saturation, Intensity) and preformed to split One image into chromatic region and achromatic region respectively, It is necessary to normalize the size of image for 200*N or N*200 and to convert true colors into 256 color. Two color histograms for background and object are used in order to decide on color selection in the color space. Spatial information is obtained using a maximum entropy discretization. It is possible to choose the class, color, shape, location and size of image by using keyword. An input color is limited by 15 kinds keyword of chromatic and achromatic colors of the Korea Industrial Standards. Image retrieval method is used as the key of retrieval properties in the similarity. The weight values of color space ${\alpha}(%)and\;keyword\;{\beta}(%)$ can be chosen by the user in inputting the query words, controlling the values according to the properties of image_contents. The result of retrieval in the test using extracted feature such as color space and keyword to the query image are lower that those of weight value. In the case of weight value, the average of te measuring parameters shows approximate Precision(0.858), Recall(0.936), RT(1), MT(0). The above results have proved higher retrieval effects than the content_based image retrieval by using color space of keywords.

  • PDF

A Study on the Structure of Research Domain for Internet of Things Based on Keyword Analysis (키워드 분석 기반 사물인터넷 연구 도메인 구조 분석)

  • Namn, Su-Hyeon
    • Management & Information Systems Review
    • /
    • v.36 no.1
    • /
    • pp.273-290
    • /
    • 2017
  • Internet of Things (IoT) is considered to be the next wave of Information Technology transformation after the Internet has changed the process of doing business. Since the domain of IoT ranging from the sensor technology to service to the users is wide, the structure of the research domain is not delineated clearly. To do that we suggest to use the Technology Stack Model proposed by Porter et al.(2014) to measure the maturity level of IoT in organizations. Based on the Stack Model, for the general understandings of IoT, we do keyword analyses on the academic papers whose major research issue is IoT. It is found that the current status of IoT application from the perspectives of cloud and big data analytics is not active, meaning that the real value of IoT has not been realized. We also examine the cases which deal with the part of cloud process which is crucial for value accrual. Based on these findings, we suggest the future direction of IoT research. We also propose that IT is to value chain what IoT is to the Stack Model to derive value in organizations.

  • PDF

Exploring the Key Technologies on Next Production Innovation (4차 산업혁명 차세대 생산혁신 기술 탐색: 키워드 네트워크를 중심으로)

  • Lee, Suchul;Ko, Mihyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.9
    • /
    • pp.199-207
    • /
    • 2018
  • This study aims to analyze Next Production Revolution (NPR) technologies through evidence-based keyword network in order to cope with the change of production paradigm called the Fourth Industrial Revolution (4IR). For the analysis, a total of 441 papers related to NPR or 4IR were extracted and the NPR technology network was constructed based on the simultaneous appearance relationship of the author keywords of these papers. Based on the NPR technology network, we explored key technologies through analysis of centrality and keyword group. As a result, technologies such as 'digital twin' and 'modeling and simulation', discovering insights by connecting the virtual and physical world in real time and reflecting them into design and process, are analyzed as key technologies.

Patent Keyword Analysis using Gamma Regression Model and Visualization

  • Jun, Sunghae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.143-149
    • /
    • 2022
  • Since patent documents contain detailed results of research and development technologies, many studies on various patent analysis methods for effective technology analysis have been conducted. In particular, research on quantitative patent analysis by statistics and machine learning algorithms has been actively conducted recently. The most used patent data in quantitative patent analysis is technology keywords. Most of the existing methods for analyzing the keyword data were models based on the Gaussian probability distribution with random variable on real space from negative infinity to positive infinity. In this paper, we propose a model using gamma probability distribution to analyze the frequency data of patent keywords that can theoretically have values from zero to positive infinity. In addition, in order to determine the regression equation of the gamma-based regression model, two-mode network is constructed to visualize the technological association between keywords. Practical patent data is collected and analyzed for performance evaluation between the proposed method and the existing Gaussian-based analysis models.

Analysis of online parenting community posts on expanded newborn screening for metabolic disorders using topic modeling: a quantitative content analysis (토픽 모델링을 활용한 광범위 선천성 대사이상 신생아 선별검사 관련 온라인 육아 커뮤니티 게시 글 분석: 계량적 내용분석 연구)

  • Myeong Seon Lee;Hyun-Sook Chung;Jin Sun Kim
    • Women's Health Nursing
    • /
    • v.29 no.1
    • /
    • pp.20-31
    • /
    • 2023
  • Purpose: As more newborns have received expanded newborn screening (NBS) for metabolic disorders, the overall number of false-positive results has increased. The purpose of this study was to explore the psychological impacts experienced by mothers related to the NBS process. Methods: An online parenting community in Korea was selected, and questions regarding NBS were collected using web crawling for the period from October 2018 to August 2021. In total, 634 posts were analyzed. The collected unstructured text data were preprocessed, and keyword analysis, topic modeling, and visualization were performed. Results: Of 1,057 words extracted from posts, the top keyword based on 'term frequency-inverse document frequency' values was "hypothyroidism," followed by "discharge," "close examination," "thyroid-stimulating hormone levels," and "jaundice." The top keyword based on the simple frequency of appearance was "XXX hospital," followed by "close examination," "discharge," "breastfeeding," "hypothyroidism," and "professor." As a result of LDA topic modeling, posts related to inborn errors of metabolism (IEMs) were classified into four main themes: "confirmatory tests of IEMs," "mother and newborn with thyroid function problems," "retests of IEMs," and "feeding related to IEMs." Mothers experienced substantial frustration, stress, and anxiety when they received positive NBS results. Conclusion: The online parenting community played an important role in acquiring and sharing information, as well as psychological support related to NBS in newborn mothers. Nurses can use this study's findings to develop timely and evidence-based information for parents whose children receive positive NBS results to reduce the negative psychological impact.

Keyword Spotting on Hangul Document Images Using Image-to-Image Matching (영상 대 영상 매칭을 이용한 한글 문서 영상에서의 단어 검색)

  • Park Sang Cheol;Son Hwa Jeong;Kim Soo Hyung
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.357-364
    • /
    • 2005
  • In this paper, we propose an accurate and fast keyword spotting system for searching user-specified keyword in Hangul document images by using two-level image-to-image matching. The system is composed of character segmentation, creating a query image, feature extraction, and matching procedure. Two different feature vectors are used in the matching procedure. An experiment using 1600 Hangul word images from 8 document images, downloaded from the website of Korea Information Science Society, demonstrates that the proposed system is superior to conventional image-based document retrieval systems.

Unstructured Data Processing Using Keyword-Based Topic-Oriented Analysis (키워드 기반 주제중심 분석을 이용한 비정형데이터 처리)

  • Ko, Myung-Sook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.11
    • /
    • pp.521-526
    • /
    • 2017
  • Data format of Big data is diverse and vast, and its generation speed is very fast, requiring new management and analysis methods, not traditional data processing methods. Textual mining techniques can be used to extract useful information from unstructured text written in human language in online documents on social networks. Identifying trends in the message of politics, economy, and culture left behind in social media is a factor in understanding what topics they are interested in. In this study, text mining was performed on online news related to a given keyword using topic - oriented analysis technique. We use Latent Dirichiet Allocation (LDA) to extract information from web documents and analyze which subjects are interested in a given keyword, and which topics are related to which core values are related.

ValueRank: Keyword Search of Object Summaries Considering Values

  • Zhi, Cai;Xu, Lan;Xing, Su;Kun, Lang;Yang, Cao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5888-5903
    • /
    • 2019
  • The Relational ranking method applies authority-based ranking in relational dataset that can be modeled as graphs considering also their tuples' values. Authority directions from tuples that contain the given keywords and transfer to their corresponding neighboring nodes in accordance with their values and semantic connections. From our previous work, ObjectRank extends to ValueRank that also takes into account the value of tuples in authority transfer flows. In a maked difference from ObjectRank, which only considers authority flows through relationships, it is only valid in the bibliographic databases e.g. DBLP dataset, ValueRank facilitates the estimation of importance for any databases, e.g. trading databases, etc. A relational keyword search paradigm Object Summary (denote as OS) is proposed recently, given a set of keywords, a group of Object Summaries as its query result. An OS is a multilevel-tree data structure, in which node (namely the tuple with keywords) is OS's root node, and the surrounding nodes are the summary of all data on the graph. But, some of these trees have a very large in total number of tuples, size-l OSs are the OS snippets, have also been investigated using ValueRank.We evaluated the real bibliographical dataset and Microsoft business databases to verify of our proposed approach.

EMRQ: An Efficient Multi-keyword Range Query Scheme in Smart Grid Auction Market

  • Li, Hongwei;Yang, Yi;Wen, Mi;Luo, Hongwei;Lu, Rongxing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3937-3954
    • /
    • 2014
  • With the increasing electricity consumption and the wide application of renewable energy sources, energy auction attracts a lot of attention due to its economic benefits. Many schemes have been proposed to support energy auction in smart grid. However, few of them can achieve range query, ranked search and personalized search. In this paper, we propose an efficient multi-keyword range query (EMRQ) scheme, which can support range query, ranked search and personalized search simultaneously. Based on the homomorphic Paillier cryptosystem, we use two super-increasing sequences to aggregate multidimensional keywords. The first one is used to aggregate one buyer's or seller's multidimensional keywords to an aggregated number. The second one is used to create a summary number by aggregating the aggregated numbers of all sellers. As a result, the comparison between the keywords of all sellers and those of one buyer can be achieved with only one calculation. Security analysis demonstrates that EMRQ can achieve confidentiality of keywords, authentication, data integrity and query privacy. Extensive experiments show that EMRQ is more efficient compared with the scheme in [3] in terms of computation and communication overhead.