

495

Efficient Computation of Skyline Query with Keyword-based User Preference

Deokmin Haam*, Myoung Ho Kim**

*,** Korea Advanced Institute of Science and Technology, Korea
E-mail: dmhaam@dbserver.kaist.ac.kr*, mhkim@dbserver.kaist.ac.kr**

1. Introduction

Given a d-dimensional dataset, skyline query finds a set of tuples that are not dominated by any other tuples in the
dataset. A tuple t is said to dominate another tuple t’ when t is better than or equal to t’ on all dimensions and t is
strictly better than t’ on at least one dimension. Because skyline query finds all the tuples deserve consideration (i.e.,
tuples not dominated), it is useful in many applications such as multi-criteria decision making. Thus, the skyline
computation and its variants have received attention in conventional databases [1][2][3][4].

Since skyline query retrieves generally good tuples, all users get the same results by the query. To provide
personalized skyline query results, some works let users describe additional condition of the result. [2] computes
skyline based on user preference on data dimensions. For instance, when a user buys a car, she may think “price”
dimension is more important than “mileage” dimension. [3] computes skyline based on user preference on nominal
attributes such as color. For instance, when a user buys a car, she may prefer “white” cars to “black” cars. [4] uses
keywords as user preference of skyline queries. They assume that each tuple is additionally described by a textual
attribute, and they find skyline tuples whose textual descriptions contain all query keywords given by the user. For
instance, when a user buys a car, she may prefer cars with both lower mileage and lower price, and she considers only
cars equipped with both “air bags” and “air conditioning”.

In this paper, we propose a skyline query which uses query keywords as user preference. Query-by-Keywords is
one of the most useful ways to describe users‟ needs, proven by the success of keyword search on the Web. We
assume that each tuple in a dataset has d numeric type attributes and an additional textual information, and a user
expresses her preference by using two sets of query keywords, KN and KO: she wants only the tuples including all ki ∈
KN, and she prefers tuples including more kj ∈ KO. This query is suitable to cases as follows: A user wants to buy a
used car. She thinks “air conditioning”, “sunroof”, “heated seats”, “navigation system”, and “cruise system” are
useful in the convenience features. She thinks that “air conditioning” is indispensable, but other features are not. She
may prefer cars with both lower mileage and lower price, and also prefer cars having more of {“sunroof”, “heated
seats”, “navigation system”, “cruise system”}.

Intuitively, the skyline with KN and KO, called skyline query with keyword-based user preference, can be
computed by a straightforward approach, which consists of three steps: i) retrieving tuples including all ki ∈ KN, ii)
converting each retrieved tuple into d+1-dimensional tuple by combining its d numerical attributes and the number of
kj ∈ KO included in its textual information, and iii) computing skyline tuples among those d+1-dimensional tuples.
Although this straightforward approach can find correct skyline tuples, this cannot utilize any index structure because
the values in the d+1th dimension of the tuples are calculated when a query is issued, i.e., index structures considering
the dimension cannot be constructed in advance.

To compute the skyline query efficiently, we propose an algorithm, called Keyword Preference Skyline
computation algorithm (KPS), utilizing R-tree based index structure used in [1] and bitmap indexes. The d-
dimensional tuples are indexed by R-tree and their textual information fields are indexed by bitmap indexes. While
traversing the R-tree according to a branch-and-bound approach (BBS) [1], our algorithm refers bitmap indexes to
consider the d+1th dimension of the tuples. By combining those two index structures, our algorithm computes the
skyline query with keyword-based user preference efficiently.

2. Keyword Preference Skyline Computation Algorithm

Since tuples in a dataset have d numeric type attributes, we can treat them as points in a d-dimensional vector

space. Thus, we can index them by using a multidimensional index structure such as R-tree. Figure 1 (a) shows an
example dataset consisting of used cars. The cars have price and mileage values, and they are represented by points in
a 2-dimensional space. Figure 1 (b) is the R-tree index which is constructed over the cars. After the R-tree is
constructed, we give a number to each entry in leaf nodes. The number is the position of the entry in the R-tree. For
instance, the car „a‟ is the first entry in the R-tree and „m‟ is the thirteenth entry. Then, we give range information,
which forms [x, y] in Figure 1 (b), to each non-leaf node. This range information means that the MBR (i.e., non-leaf
node) contains xth entry, x+1th entry, …, and yth entry of the R-tree. This range information will be used for
comparing the d+1th dimension (i.e., keyword scores of tuples based on KN and KO) of the tuples. Also, we index
textual information of the cars by using bitmap indexes. Words in brackets (e.g., „ac‟, „sr‟, etc.) in Figure 1 (a) are
convenience features equipped with the cars, i.e., textual information of the cars. For each convenience feature, we
make a bitmap whose ith bit is 1 if the ith tuple has the feature (i.e., keyword); 0 otherwise.

By using those two index structures, KPS responses skyline query with keyword-based user preference. When a
skyline query is issued with KN and KO, the bitmaps of ki ∈ KN and kj ∈ KO are retrieved. Then, KN array (KN array =
∧ki∈KN bitmapi) and KA array (KA array[i] = Ʃkj∈KO bitmapj[i], for i=1, 2, .., M) are made, where bitmapi is a bitmap of
a keyword ki and M is the number of tuples in the dataset. By these two arrays, keyword score array (KSA), which
contains keyword scores of tuples based on KN and KO, is constructed as follows: KSA[i] = KN array[i] + KN array[i]

496

× KA array[i], for i=1, 2, .., M. Figure 1 (c) shows the keyword score array of the used cars in Figure 1 (a), when
KN={„air conditioning‟, „heated seats‟} and KO={„navigation system‟, „sunroof‟, „air bag‟}.

Figure 1. An example of a dataset and index structures

After constructing KSA, KPS traverses R-tree based on a branch and bound approach [1] to find skyline tuples. It

starts from the root node of the R-tree, and it is inserted into a heap that adjusts order of visited nodes. In the heap
nodes are sorted according to their mindist from the origin of the d-dimensional data space, and the nodes closer to
the origin are visited earlier. When a node whose range is [x, y] is visited, its keyword score is computed by finding
the maximum value in KSA[x], KSA[x+1], …, and KSA[y]. This can be computed quickly by sequential scan of
KSA. If the keyword score of the node is equal to 0, then the node is directly pruned because no tuple in the node
includes all the ki ∈ KN. If the node (whose keyword score is larger than 0) is not dominated by any current skyline
tuples in those d+1 dimensions, the node is removed from the heap and its child nodes are inserted into the heap.
Otherwise, the node is pruned. When the visited node is a tuple, if it is not dominated by any current skyline tuples, it
is removed from the heap and inserted into a set of current skyline tuples. This process is repeated until the heap is
empty. Given an example dataset in Figure 1 (a), and KN={„air conditioning‟, „heated seats‟} and KO={„navigation
system‟, „sunroof‟, „air bag‟}, the skyline tuples are {b, c, h, g}. This result is different from i) {a, f, h}, which is a set
of skylines when only price and mileage are considered, ii) {b, h}, which is a set of skylines when only tuples
including all ki ∈ KN are considered, and iii) ∅, which is a set of skylines when only tuples including all ki ∈ KN∪KO
are considered.

3. Conclusion

In this paper, we proposed the skyline query with keyword-based user preference and an efficient algorithm for

computing the skyline query. To the best of our knowledge, this work is the first attempt to consider the number of
matched query keywords as a degree of user preference for skyline computation. KPS, the proposed algorithm,
retrieves R-tree based on a branch and bound approach based on the R-tree index structure constructed on tuples in a
given dataset. While traversing the R-tree, KPS can prune non-skyline nodes based on their coordinates represented
by MBR and their keyword scores computed from bitmap indexes of keywords. The performance study through
experiments in various parameters and datasets are in progress. By the experiments we can show that the proposed
algorithm can compute skyline query with keyword-based user preference efficiently in many different kinds of
environments.

4. Acknowledge

This research was supported by the MSIP(Ministry of Science, ICT and Future Planning) of Korea under the
ITRC support program(NIPA-2013-H0301-13-4009), and the National Research Foundation of Korea grant funded
by the Korea government(MEST) (No. 2012R1A2A2A01046694).

5. References

[1] Papadias, D., Tao, Y., Fu, G., & Seeger, B. (2003, June). “An optimal and progressive algorithm for skyline

queries.”, In Proceedings of the 2003 ACM SIGMOD international conference on Management of data (pp. 467-
478). ACM.

[2] Lee, Jongwuk, Gae-won You, and Seung-won Hwang. "Personalized top-k skyline queries in high-dimensional
space.", Information Systems 34.1 (2009): 45-61.

[3] Wong, R. W., Pei, J., Fu, A. C., & Wang, K. (2009). “Online skyline analysis with dynamic preferences on
nominal attributes.”, Knowledge and Data Engineering, IEEE Transactions on, 21(1), 35-49.

[4] Choi, H., Jung, H., Lee, K. Y., & Chung, Y. D. (2013). “Skyline queries on keyword-matched data.”, Information
Sciences, 232, 449-463.

(a) Points and MBRs of
an example dataset (c) Keyword score array of the example dataset

(b) R-tree of the example dataset

