• Title/Summary/Keyword: Keyword network

Search Result 575, Processing Time 0.032 seconds

A Social Network Analysis of Research Key Words Related Smoke Cessation in South Korea (연결망 분석을 활용한 우리나라 금연연구 동향분석)

  • An, Eun-Seong
    • Health Policy and Management
    • /
    • v.29 no.2
    • /
    • pp.138-145
    • /
    • 2019
  • Background: The purpose of this study is supposed to figure out the keyword network from 2009 to 2018 with social network analysis and provide the research data that can help the Korea government's policy making on smoking cessation. Methods: First, frequency analysis on the keyword was performed. After, in this study, I applied three classic centrality measures (degree centrality, betweenness centrality, and eigenvector centrality) with R 3.5.1. Moreover, I visualized the results as the word cloud and keyword network. Results: As a result of network analysis, 'smoking' and 'smoking cessation' were key words with high frequency, high degree centrality, and betweenness centrality. As a result of looking at trends in keyword, many study had been done on the keyword 'secondhand smoke' and 'adolescent' from 2009 to 2013, and 'cigarette graphic warning' and 'electronic cigarette' from 2014 to 2018. Conclusion: This study contributes to understand trends on smoking cessation study and seek further study with the keyword network analysis.

A Study on the Research Trends to Flipped Learning through Keyword Network Analysis (플립러닝 연구 동향에 대한 키워드 네트워크 분석 연구)

  • HEO, Gyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.3
    • /
    • pp.872-880
    • /
    • 2016
  • The purpose of this study is to find the research trends relating to flipped learning through keyword network analysis. For investigating this topic, final 100 papers (removed due to overlap in all 205 papers) were selected as subjects from the result of research databases such as RISS, DBPIA, and KISS. After keyword extraction, coding, and data cleaning, we made a 2-mode network with final 202 keywords. In order to find out the research trends, frequency analysis, social network structural property analysis based on co-keyword network modeling, and social network centrality analysis were used. Followings were the results of the research: (a) Achievement, writing, blended learning, teaching and learning model, learner centered education, cooperative leaning, and learning motivation, and self-regulated learning were found to be the most common keywords except flipped learning. (b) Density was .088, and geodesic distance was 3.150 based on keyword network type 2. (c) Teaching and learning model, blended learning, and satisfaction were centrally located and closed related to other keywords. Satisfaction, teaching and learning model blended learning, motivation, writing, communication, and achievement were playing an intermediary role among other keywords.

A Keyword Network Analysis on Health Disparity in Korea: Focusing on News and its application to Physical Education

  • Kim, Woo-Kyung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.3
    • /
    • pp.143-150
    • /
    • 2019
  • This study aimed to analyze the keyword related to Health Disparity in Korea through the method of keyword network analysis and to establish a basic database for suggesting ideas for prospective studies in physical education. To achieve the goal, this study crawled co-occured keyword with 'health' and 'disparity' from news casted in 20 different channels. The duration of the news was 3 months, from September 11th, 2018 to December 11th. The results are as follows. First, among the news during recent 3 months, there were 1,383 keyword related to health disparity and this study selected 173 keyword which had co-occured over 3 times. Second, the inclusiveness of the network was 97.674% and the density was .038. Third, analyzing news related to health disparity, 'mortality' was the most co-occured keyword and 'disparity', 'reinforcement', 'the most', 'health', '6 times', 'Seoul', 'half', 'medicine', and 'local' were shown similarly. And common keyword in 4 centrality were 13 keyword. Lastly, by analyzing eigenvector centrality, significantly different result has shown. 'Disparity' was the most co-occured keyword. Based on this result, this study showed the necessity for reinforcing the public physical education in public education system in Korea. In order to achieve it, the field of physical education must look beyond present elite-focused physical education to public physical activity.

A Study on Technology Forecasting based on Co-occurrence Network of Keyword in Multidisciplinary Journals (다학제 분야 학술지의 주제어 동시발생 네트워크를 활용한 기술예측 연구)

  • Kim, Hyunuk;Ahn, Sang-Jin;Jung, Woo-Sung
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.40 no.4
    • /
    • pp.49-63
    • /
    • 2015
  • Keyword indexed in multidisciplinary journals show trends about science and technology innovation. Nature and Science were selected as multidisciplinary journals for our analysis. In order to reduce the effect of plurality of keyword, stemming algorithm were implemented. After this process, we fitted growth curve of keyword (stem) following bass model, which is a well-known model in diffusion process. Bass model is useful for expressing growth pattern by assuming innovative and imitative activities in innovation spreading. In addition, we construct keyword co-occurrence network and calculate network measures such as centrality indices and local clustering coefficient. Based on network metrics and yearly frequency of keyword, time series analysis was conducted for obtaining statistical causality between these measures. For some cases, local clustering coefficient seems to Granger-cause yearly frequency of keyword. We expect that local clustering coefficient could be a supportive indicator of emerging science and technology.

Keyword Network Analysis on Global Research Trend in Design (1999~2018) (글로벌 디자인 연구동향에 대한 키워드 네트워크 분석 연구 (1999~2018))

  • Choi, Chool-Heon;Jang, Phill-Sik
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.2
    • /
    • pp.7-16
    • /
    • 2019
  • The purpose of this study is to identify the characteristics of researches that have been conducted for the last 20 years through analyzing global research trends and evolutions of design articles from 1999 to 2018 with keyword network analysis. For this purpose, we selected 3,569 articles in 22 journals related to design research retrieved from the Scopus database and constructed keyword network model through the author keyword and index keyword. The frequency of the author and index keyword, the centrality of betweenness and degree were analyzed with the keyword network. The results show that design has been applied to various fields for recent 20 years, and the research trends of design could be quantitatively characterized by keyword network analysis. The result of this study could be used to suggest future research topics in the field of design based on quantitative and empirical data.

Information Retrieval System using Keyword-Base Concept Nets in Mobile Cloud (모바일 클라우드 환경의 키워드 개념 망을 이용한 정보 검색 시스템)

  • Moon, Seok-Jae;Yoon, Chang-Pyo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.661-663
    • /
    • 2013
  • The purpose of the following report is to introduce a model that makes it possible to efficiently search data by using keyword-based concept network for reliable access of information which is rapidly increasing in the mobile cloud. A keyword-based concept network is a method with the application of ontology. However, the proposed model is added by association information between keyword concepts as a method for a user's efficient information retrieval. Furthermore, the proposed concept network consists of the keyword centered concept network, expert-group-recommended field concept network, and process concept network.

  • PDF

Keyword Network Analysis for Technology Forecasting (기술예측을 위한 특허 키워드 네트워크 분석)

  • Choi, Jin-Ho;Kim, Hee-Su;Im, Nam-Gyu
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.227-240
    • /
    • 2011
  • New concepts and ideas often result from extensive recombination of existing concepts or ideas. Both researchers and developers build on existing concepts and ideas in published papers or registered patents to develop new theories and technologies that in turn serve as a basis for further development. As the importance of patent increases, so does that of patent analysis. Patent analysis is largely divided into network-based and keyword-based analyses. The former lacks its ability to analyze information technology in details while the letter is unable to identify the relationship between such technologies. In order to overcome the limitations of network-based and keyword-based analyses, this study, which blends those two methods, suggests the keyword network based analysis methodology. In this study, we collected significant technology information in each patent that is related to Light Emitting Diode (LED) through text mining, built a keyword network, and then executed a community network analysis on the collected data. The results of analysis are as the following. First, the patent keyword network indicated very low density and exceptionally high clustering coefficient. Technically, density is obtained by dividing the number of ties in a network by the number of all possible ties. The value ranges between 0 and 1, with higher values indicating denser networks and lower values indicating sparser networks. In real-world networks, the density varies depending on the size of a network; increasing the size of a network generally leads to a decrease in the density. The clustering coefficient is a network-level measure that illustrates the tendency of nodes to cluster in densely interconnected modules. This measure is to show the small-world property in which a network can be highly clustered even though it has a small average distance between nodes in spite of the large number of nodes. Therefore, high density in patent keyword network means that nodes in the patent keyword network are connected sporadically, and high clustering coefficient shows that nodes in the network are closely connected one another. Second, the cumulative degree distribution of the patent keyword network, as any other knowledge network like citation network or collaboration network, followed a clear power-law distribution. A well-known mechanism of this pattern is the preferential attachment mechanism, whereby a node with more links is likely to attain further new links in the evolution of the corresponding network. Unlike general normal distributions, the power-law distribution does not have a representative scale. This means that one cannot pick a representative or an average because there is always a considerable probability of finding much larger values. Networks with power-law distributions are therefore often referred to as scale-free networks. The presence of heavy-tailed scale-free distribution represents the fundamental signature of an emergent collective behavior of the actors who contribute to forming the network. In our context, the more frequently a patent keyword is used, the more often it is selected by researchers and is associated with other keywords or concepts to constitute and convey new patents or technologies. The evidence of power-law distribution implies that the preferential attachment mechanism suggests the origin of heavy-tailed distributions in a wide range of growing patent keyword network. Third, we found that among keywords that flew into a particular field, the vast majority of keywords with new links join existing keywords in the associated community in forming the concept of a new patent. This finding resulted in the same outcomes for both the short-term period (4-year) and long-term period (10-year) analyses. Furthermore, using the keyword combination information that was derived from the methodology suggested by our study enables one to forecast which concepts combine to form a new patent dimension and refer to those concepts when developing a new patent.

A Study on the Application to Network analysis on Importance of Author keyword based on Sequence of keyword (네트워크 분석을 통한 저자키워드 출현순서에 대한 의미 분석)

  • Kwon, Sun-young
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.9
    • /
    • pp.9-14
    • /
    • 2018
  • This study aims to investigate an importance of Author keyword with analysis the position of author keyword. An analysis was carried out on the position of author keyword. we examined an importance of Author keyword by using degree centrality, closeness centrality, betweenness centrality, eigenvector centrality. In the next stage, we performed analysis on correlation between network centrality measures and the position of keyword. As a result, degree centrality, closeness centrality, betweenness centrality, eigenvector centrality both has a high value in 4th author keyword order. eigenvector centrality was the comparatively effective method to separate of author keyword order method than other 3 centrality. Correlation analysis result shows that the network analysis value are increasing in order. This study has significance in that it was able to examine the author keyword behavior. Future research is needed to identify and supplement future situational factors, behavior, and psychology.

A Study on the Application to Network Analysis on the Importance of Author Keyword based on the Position of Keyword (학술논문의 저자키워드 출현순서에 따른 저자키워드 중요도 측정을 위한 네트워크 분석방법의 적용에 관한 연구)

  • Kwon, Sun-Young
    • Journal of the Korean Society for information Management
    • /
    • v.31 no.2
    • /
    • pp.121-142
    • /
    • 2014
  • This study aims to investigate the importance of author keyword with analysis the position of author keyword in journal. In the first stage, an analysis was carried out on the position of author keyword. We examined the importance of author keyword by using degree centrality, closeness centrality, betweenness centrality, eigenvector centrality and effective size of structural hole. In the next stage, We performed analysis on correlation between network centrality measures and the position of author keyword. The result of correlation analysis on network centrality measures and the position of author keyword shows that there are the more significant areas of the result of the correlation analysis on degree centrality, betweenness centrality and the position of keyword. In addition, These results show that we need to consider that the possible way as measuring the importance of author keyword in journal is not only a term frequency but also degree centrality and betweenness centrality.

Social network analysis of keyword community network in IoT patent data (키워드 커뮤니티 네트워크의 소셜 네트워크 분석을 이용한 사물 인터넷 특허 분석)

  • Kim, Do Hyun;Kim, Hyon Hee;Kim, Donggeon;Jo, Jinnam
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.719-728
    • /
    • 2016
  • In this paper, we analyzed IoT patent data using the social network analysis of keyword community network in patents related to Internet of Things technology. To identify the difference of IoT patent trends between Korea and USA, 100 Korea patents and 100 USA patents were collected, respectively. First, we first extracted important keywords from IoT patent abstracts using the TF-IDF weight and their correlation and then constructed the keyword network based on the selected keywords. Second, we constructed a keyword community network based on the keyword community and performed social network analysis. Our experimental results showed while Korea patents focus on the core technologies of IoT (such as security, semiconductors and image process areas), USA patents focus on the applications of IoT (such as the smart home, interactive media and telecommunications).