Journal of the Korea Society of Computer and Information
/
v.20
no.1
/
pp.255-263
/
2015
In this paper, we suggest a plan to take advantage of the SNS data to proactively identify the information on crime risk factor and to prevent crime. Recently, SNS(Social Network Service) data have been used to build a proactive prevention system in a variety of fields. However, when users are collecting SNS data with simple keyword, the result is contain a large amount of unrelated data. It may possibly accuracy decreases and lead to confusion in the data analysis. So we present a method that can be efficiently extracted by improving the search accuracy through text mining analysis of SNS data.
Purpose The purpose of this study is to define the anti-ESG activities of companies recognized by media by reflecting ESG recently attracted attention. This study extracts keywords for ESG controversies through association rule mining. Design/methodology/approach A research framework is designed to extract keywords for ESG controversies as follows: 1) From DeepSearch DB, we collect 23,837 articles on anti-ESG activities exposed to 130 media from 2013 to 2018 of 294 listed companies with ESG ratings 2) We set keywords related to environment, social, and governance, and delete or merge them with other keywords based on the support, confidence, and lift derived from association rule mining. 3) We illustrate the importance of keywords and the relevance between keywords through density, degree centrality, and closeness centrality on network analysis. Findings We identify a total of 26 keywords for ESG controversies. 'Gapjil' records the highest frequency, followed by 'corruption', 'bribery', and 'collusion'. Out of the 26 keywords, 16 are related to governance, 8 to social, and 2 to environment. The keywords ranked high are mostly related to the responsibility of shareholders within corporate governance. ESG controversies associated with social issues are often related to unfair trade. As a result of confidence analysis, the keywords related to social and governance are clustered and the probability of mutual occurrence between keywords is high within each group. In particular, in the case of "owner's arrest", it is caused by "bribery" and "misappropriation" with an 80% confidence level. The result of network analysis shows that 'corruption' is located in the center, which is the most likely to occur alone, and is highly related to 'breach of duty', 'embezzlement', and 'bribery'.
There has been significant research conducted on how to discover various insights through text data using statistical techniques. In this study we analyzed text data produced by the Korean National Police Agency to identify trends in the work by year and compare work characteristics among local authorities by identifying distinctive keywords in documents produced by each local authority. A preprocessing according to the characteristics of each data was conducted and the frequency of words for each document was calculated in order to draw a meaningful conclusion. The simple term frequency shown in the document is difficult to describe the characteristics of the keywords; therefore, the frequency for each term was newly calculated using the term frequency-inverse document frequency weights. The L2 norm normalization technique was used to compare the frequency of words. The analysis can be used as basic data that can be newly for future police work improvement policies and as a method to improve the efficiency of the police service that also help identify a demand for improvements in indoor work.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.2
/
pp.172-178
/
2020
In order to recommend contents, the company generally uses collaborative filtering that takes into account both user preferences and video (item) similarities. Such services are primarily intended to facilitate user convenience by leveraging personal preferences such as user search keywords and viewing time. It will also be ranked around the keywords specified in the video. However, there is a limit to analyzing video similarities using limited keywords. In such cases, the problem becomes serious if the specified keyword does not properly reflect the item. In this paper, I would like to propose a system that identifies the characteristics of a video as it is by the system without human intervention, and analyzes and recommends similarities between videos. The proposed system analyzes similarities by taking into account all words (keywords) that have different meanings from training videos, and in such cases, the methods handled by big data clusters are applied because of the large scale of data and operations.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.8
/
pp.999-1005
/
2020
While search portals' 'Portal News' account for the largest portion of aggregated news outlet, its neutrality as an outlet is questionable. This is because news aggregation may lead to prejudiced information consumption by recommending biased news articles. In this paper we introduce a new method of measuring political bias of news articles by using deep learning. It can provide its readers with insights on critical thinking. For this method, we build the dataset for deep learning by analyzing articles' bias from keywords, sourced from the National Assembly proceedings, and assigning bias to said keywords. Based on these data, news article bias is calculated by applying deep learning with a combination of Convolution Neural Network and Recurrent Neural Network. Using this method, 95.6% of sentences are correctly distinguished as either conservative or progressive-biased; on the entire article, the accuracy is 46.0%. This enables analyzing any articles' bias between conservative and progressive unlike previous methods that were limited on article subjects.
Purpose: In order to improve the audit quality of a company, an in-depth analysis is required to categorize the audit report in the form of a text document containing the details of the external audit. This study introduces a systematic methodology to extract keywords for each group that determines the differences between groups such as 'audit plan' and 'interim audit' using audit reports collected in the form of text documents. Methods: The first step of the proposed methodology is to preprocess the document through text mining. In the second step, the documents are classified into groups using machine learning techniques and based on this, important vocabularies that have a dominant influence on the performance of classification are extracted. In the third step, the association rules for each group's documents are found. In the last step, the final keywords for each group representing the characteristics of each group are extracted by comparing the important vocabulary for classification with the important vocabulary representing the association rules of each group. Results: This study quantitatively calculates the importance value of the vocabulary used in the audit report based on machine learning rather than the qualitative research method such as the existing literature search, expert evaluation, and Delphi technique. From the case study of this study, it was found that the extracted keywords describe the characteristics of each group well. Conclusion: This study is meaningful in that it has laid the foundation for quantitatively conducting follow-up studies related to key vocabulary in each stage of auditing.
The proportion of users and companies using open source continues to grow. The size of open source software market is growing rapidly not only in foreign countries but also in Korea. However, compared to the continuous development of open source software, there is little research on open source software subject classification, and the classification system of software is not specified either. At present, the user uses a method of directly inputting or tagging the subject, and there is a misclassification and hassle as a result. Research on open source software classification can also be used as a basis for open source software evaluation, recommendation, and filtering. Therefore, in this study, we propose a method to classify open source software by using machine learning model and propose performance comparison by machine learning model.
Misbah Iram;Saif Ur Rehman;Shafaq Shahid;Sayeda Ambreen Mehmood
International Journal of Computer Science & Network Security
/
v.23
no.10
/
pp.97-106
/
2023
Sentiment analysis using social network platforms such as Twitter has achieved tremendous results. Twitter is an online social networking site that contains a rich amount of data. The platform is known as an information channel corresponding to different sites and categories. Tweets are most often publicly accessible with very few limitations and security options available. Twitter also has powerful tools to enhance the utility of Twitter and a powerful search system to make publicly accessible the recently posted tweets by keyword. As popular social media, Twitter has the potential for interconnectivity of information, reviews, updates, and all of which is important to engage the targeted population. In this work, numerous methods that perform a classification of tweet sentiment in Twitter is discussed. There has been a lot of work in the field of sentiment analysis of Twitter data. This study provides a comprehensive analysis of the most standard and widely applicable techniques for opinion mining that are based on machine learning and lexicon-based along with their metrics. The proposed work is helpful to analyze the information in the tweets where opinions are highly unstructured, heterogeneous, and polarized positive, negative or neutral. In order to validate the performance of the proposed framework, an extensive series of experiments has been performed on the real world twitter dataset that alter to show the effectiveness of the proposed framework. This research effort also highlighted the recent challenges in the field of sentiment analysis along with the future scope of the proposed work.
This study explores the usability of extended reality (XR) content tailored for production process training, with a focus on user experience. Participants engaged with extended reality training modules, and qualitative data was subsequently collected through interviews. These interviews evaluated the hardware, user interface, and overall user satisfaction. The analysis utilized python packages for keyword extraction and word cloud visualization, offering insights into user perceptions. The findings revealed that although the hardware was deemed comfortable, concerns were raised regarding its weight and heat emission. The interactive interface, which relies on hand tracking, encountered issues with recognition rates, leading to suggestions for alternative input methods. Users acknowledged extended reality's potential impact on industries like healthcare and education, sharing both positive and negative views on the technology. This research enhances our understanding of user responses and guides the future enhancement of extended reality content for industrial applications, aiming to improve its quality and practical usability
In this paper, the artificial intelligence (AI) technology used in the medical image analysis field was analyzed through a literature review. Literature searches were conducted on PubMed, ResearchGate, Google and Cochrane Review using the key word. Through literature search, 114 abstracts were searched, and 98 abstracts were reviewed, excluding 16 duplicates. In the reviewed literature, AI is applied in classification, localization, disease detection, disease segmentation, and fit degree of registration images. In machine learning (ML), prior feature extraction and inputting the extracted feature values into the neural network have disappeared. Instead, it appears that the neural network is changing to a deep learning (DL) method with multiple hidden layers. The reason is thought to be that feature extraction is processed in the DL process due to the increase in the amount of memory of the computer, the improvement of the calculation speed, and the construction of big data. In order to apply the analysis of medical images using AI to medical care, the role of physicians is important. Physicians must be able to interpret and analyze the predictions of AI algorithms. Additional medical education and professional development for existing physicians is needed to understand AI. Also, it seems that a revised curriculum for learners in medical school is needed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.