• Title/Summary/Keyword: Keying

Search Result 553, Processing Time 0.027 seconds

Offset Phase Rotation Shift Keying and Phase Silence Rotation Shift Keying Modulation for Medical In-Body WBAN Systems (의료용 In-Body WBAN 시스템을 위한 Offset Phase Rotation Shift Keying 및 Phase Silence Sotation Shift Keying 변조 방식)

  • Choi, Il-Muk;Won, Kyung-Hoon;Kim, Ki-Yun;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.290-297
    • /
    • 2012
  • In this paper, we proposed new modulation schemes, Offset Phase Rotation Shift Keying (OPRSK) and Phase Shift Rotation Shift Keying (PSRSK), for medical in-body wireless body area network (WBAN) systems. In IEEE, the WBAN system is assigned as 802.15. Task Group (TG) 6, and the related standardization is being progressed. Recently, in this Group, Phase Silence Shift Keying (PSSK), Phase Silence Position Keying (PSPK) and Phase Rotation Shift Keying (PRSK), which can obtain higher power efficiency, are proposed as new modulation schemes for low-power operation of WBAN system. However, they have a disadvantage for non-linear amplifier distortion. Therefore, in this paper, we proposed OPRSK and PSRSK, which are robust to non-linear amplification, by employing a phase offset in constellation and a power distribution in symbol duration, and verified that the proposed methods have good perfomance and stable operation through performance evaluation.

A new Robust Wavelet Shift Keying System Using Scaling and Wavelet Functions (스케일링 함수와 웨이브릿을 이용한 잡음에 강인한 새로운 웨이브릿 편이 변조 시스템)

  • Jeong, Tae-Il
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.98-103
    • /
    • 2008
  • There are the frequency shift keying(FSK), phase shift keying(PSK) and amplitude shift keying(ASK) in the conventional digital communications method. In this paper, We proposed a new robust wavelet shift keying system using scaling and wavelet function in the digital communication. Wavelet Transform consist of a low frequency and high frequency coefficient. When the input signal is one, if it finds the impulse response, the signal is separated from the scaling and wavelet function. The binary data is encoded by modulator which assigned the scaling function to 1(one), and wavelet to zero(0). It was demonstrated by experiment that the proposed algorithm can be a robust noise.

  • PDF

Wavelet Shift Keying System Using a Binary Matching Filter (2진 정합필터를 이용한 웨이브릿 편이변조 시스템)

  • Oh, Hyoung-Jin;Jeong, Tae-Il;Lee, Tae-Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.1933-1938
    • /
    • 2008
  • There are the frequency shift keying(FSK), phase shift keying(PSK) and amplitude shift keying(ASK) in the conventional digital communications method. In this parer, We proposed the algorithm for wavelet shift keying system using a binary matching filter in the digital communication. Wavelet shift keying system are used to a scaling function(low frequency) and wavelet(high frequency) coefficients. The binary data is encoded by modulator which assigned the scaling function to 1(one), and wavelet to zero(0). Wavelet shift keying of the conventional method needs to a post-processing for the decoding. In this paper, wavelet shift keying signal is reconstructed by the decoder using a binary matching filter. So, it was able to the decoding without the post-processing. It was demonstrated by the experiment that the proposed algorithm is a validity.

Space-Time M-ary Orthogonal Walsh Sequence Keying (시공간 M-ary 직교 Walsh 수열 변조)

  • Kim, Jeong-Chang;Cheun, Kyung-Whoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.3
    • /
    • pp.15-18
    • /
    • 2009
  • In this paper, we propose ST-MWSK (space-time M-ary orthogonal Walsh sequence keying) employing MWSK which does not require channel estimation at the receiver. The computational complexity for the noncoherent ML (maximum-likelihood) detector of ST-MWSK is significantly reduced compared to that of ST-FSK (ST frequency-shift keying). Also, the performance of ST-MWSK is virtually identical to that of ST-FSK.

A Study on the Performance Analysis of 4-ary Scaling Wavelet Shift Keying (4-ary 스케일링 웨이브릿 편이 변조 시스템의 성능 분석에 관한 연구)

  • Jeong, Tae-Il;Ryu, Tae-Kyung;Kim, Jong-Nam;Moon, Kwang-Seok;Kim, Hyun-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1155-1163
    • /
    • 2010
  • An algorithm of the conventional wavelet shift keying is carried out that the scaling function and wavelet are encoded to 1(mark) and 0(space) for the input binary data, respectively. Two bit modulation technique which uses four carrier frequencies is existed. Four carrier frequencies are defined as scaling function, inversed scaling function, wavelet, and inversed wavelet, which are encoded to 10, 11, 00 and 01, respectively. In this paper, we defined 4-ary SWSK (4-ary scaling wavelet shift keying) which is two bit modulation, and it is derived to the probability of bit error and symbol error of the defined system from QPSK. In order to analyze to the performance of 4-ary SWSK, we are obtained in terms of the probability of bit error and symbol error for QPSK (quadrature phase shift keying), MFSK(M-ary frequency shift keying) and proposed method. As a results of simulation, we confirmed that the proposed method was superior to the performance in terms of the probability of bit error and symbol error.

A Study on Performance Analysis for Error Probability in SWSK Systems

  • Jeong, Tae-Il;Moon, Kwang-Seok;Kim, Jong-Nam
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.556-561
    • /
    • 2011
  • This paper presents a new method for shift keying using the combination of scaling function and wavelet named scaling wavelet shift keying (SWSK). An algorithm for SWSK modulation is carried out where the scaling function and the wavelet are encoded to 1 and 0 in accordance with the binary input, respectively. Signal energy, correlation coefficient and error probability of SWSK are derived from error probability of frequency shift keying(FSK). The performance is analyzed in terms of error probability and it is simulated in accordance with the kind of the wavelet. Based on the results, we can conclude that the proposed scheme is superior to the performance of the conventional schemes.

Wavelet Shift Keying System using Binary Matching Filter (2진 정합필터를 이용한 웨이브릿 편이변조 시스템)

  • Oh, Hyoung-Jin;Jeong, Tae-Il;Lee, Tae-Oh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.203-206
    • /
    • 2008
  • 기존의 대표적인 디지털 통신방식으로 주파수 편이 변조(FSK: frequency shift keying), 위상 편이 변조(PSK: phase shift keying), 진폭 편이 변조(ASK: amplitude shift keying) 방식들이 있다. 본 논문에서는 2진 정합필터를 이용하여 웨이브릿 편이변조 신호를 복원하는 알고리즘을 제안한다. 웨이브릿 편이 변조 시스템은 스케일링 함수(scaling function)와 웨이브릿(wavelet)을 이용한다. 스케일링 함수를 1로, 웨이브릿 함수를 0으로 할당하여 2진 데이터를 변조한다. 기존의 웨이브릿 편이 변조 시스템에서는 복원을 위해 후처리가 필요하였다. 된 논문에서는 2진정합필터를 이용하여 복원하므로, 별도의 후처리 과정 없이 복원을 가능하게 하였다. 모의실험 결과 제안한 알고리즘이 타당함을 확인하였다.

  • PDF

Reconstruction of Wavelet Shift Keying Signal with 2bit Scales (2 비트 스케일을 갖는 웨이브릿 편이 변조 신호의 복원)

  • Kim, Dae-Sung;Kim, Hyun-Jin;Jeong, Tae-Il;Lee, Tae-Oh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.227-230
    • /
    • 2008
  • 기존의 대표적인 디지털 통신방식으로 주파수 편이 변조(FSK: frequency shift keying), 위상 편이 변조(PSK: phase shift keying), 진폭 편이 변조(ASK: amplitude shift keying) 방식들이 있다. 본 논문에서는 디지털 통신에서 비트 전송률을 높이기 위하여 스케일링 함수(scaling function)와 웨이브릿(wavelet)을 이용한 2비트 스케일을 갖는 웨이브릿 편이 변조(WSK: wavelet shift keying)신호의 복원 알고리즘을 제안한다. 변조시 스케일링 함수(scaling function)와 웨이브릿(wavelet) 그리고 이 두 신호를 반전하여 2비트 스케일 즉, 00, 01, 10, 그리고 11로 변조하였다. 복조시에는 변조된 신호를 2개의 2진 정합필터에 통과시켰다. 그리고 정합필터를 거친 파형을 조합하여 4가지 신호를 복원하였다. 모의실험 결과 제안한 알고리즘이 기존의 웨이브릿 편이 변조 시스템에 비해 전송효율이 향상되었음을 알 수 있었다.

  • PDF

A Study of the Digital Modulation using DSP (DSP를 이용한 디지털 변조에 관한 연구)

  • 최상권;최진웅;김정국
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.89-92
    • /
    • 2001
  • In this paper, as a study of programmable software radio digital communication, we implemented ASK(Amplitude Shift Keying), FSK(Frequency Shift Keying), and PSK(Phase Shift Keying) modulation using programmable software(algorithm) of DSP(Digital Signal Processor). Moreover, it is possible to select one of those three modulation methods by realizing on single DSP. We adopted Motorola DSP56002 and Crystal CS4215(A/D and D/A converter) for our purpose. The DSP56002 is 24-bit and operates 20 MIPS at 40 MHz, and the CS4215 is 16-bit and supports the maximum 50 kHz sampling frequency.

  • PDF

Transmission Performance Comparison of Direction Detection-Based 100-Gb/s Modulation Formats for Metro Area Optical Networks

  • Chung, Hwan Seok;Chang, Sun Hyok;Lee, Jonghyun;Kim, Kwangjoon
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.800-806
    • /
    • 2012
  • Transmission performances of direct detection-based 100-Gb/s modulation formats are investigated and compared for metro area optical networks. The effects of optical signal-to-noise ratio sensitivity, chromatic dispersion, cross-channel nonlinearity, and transmission distance on the performance of differential 8-ary phase-shift keying (D8PSK), differential phase-shift keying plus three-level amplitude-shift keying (DPSK+3ASK), and dual-carrier differential quaternary phase-shift keying (DC-DQPSK) are evaluated. The performance of coherent dual-polarization quadrature phase-shift keying (DP-QPSK) with block phase estimation and coherent DP-QPSK with digital differential detection are also presented for reference. According to our analysis, all three direct detection modulation formats could transmit a 100-Gb/s signal over several hundred kilometers of a single-mode fiber link. The results also show that DC-DQPSK outperforms D8PSK and DPSK+3ASK, and the performance of DC-DQPSK is comparable to that of coherent DP-QPSK with digital differential detection. The maximum transmission distance of DC-DQPSK is over 1,000 km, which is enough distance for metro applications.