• Title/Summary/Keyword: Key element

Search Result 1,493, Processing Time 0.026 seconds

1D finite element artificial boundary method for layered half space site response from obliquely incident earthquake

  • Zhao, Mi;Yin, Houquan;Du, Xiuli;Liu, Jingbo;Liang, Lingyu
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.173-194
    • /
    • 2015
  • Site response analysis is an important topic in earthquake engineering. A time-domain numerical method called as one-dimensional (1D) finite element artificial boundary method is proposed to simulate the homogeneous plane elastic wave propagation in a layered half space subjected to the obliquely incident plane body wave. In this method, an exact artificial boundary condition combining the absorbing boundary condition with the inputting boundary condition is developed to model the wave absorption and input effects of the truncated half space under layer system. The spatially two-dimensional (2D) problem consisting of the layer system with the artificial boundary condition is transformed equivalently into a 1D one along the vertical direction according to Snell's law. The resulting 1D problem is solved by the finite element method with a new explicit time integration algorithm. The 1D finite element artificial boundary method is verified by analyzing two engineering sites in time domain and by comparing with the frequency-domain transfer matrix method with fast Fourier transform.

Rational finite element method for plane orthotropic elastic problems

  • Mao, Ling;Yao, Weian;Gao, Qiang;Zhong, Wanxie
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.923-937
    • /
    • 2014
  • The rational finite element method is different from the standard finite element method, which is constructed using basic solutions of the governing differential equations as interpolation functions in the elements. Therefore, it is superior to the isoparametric approach because of its obvious physical meaning and accuracy; it has successfully been applied to the isotropic elasticity problem. In this paper, the formulation of rational finite elements for plane orthotropic elasticity problems is deduced. This method is formulated directly in the physical domain with full consideration of the requirements of the patch test. Based on the number of element nodes and the interpolation functions, different approaches are applied with complete polynomial interpolation functions. Then, two special stiffness matrixes of elements with four and five nodes are deduced as a representative application. In addition, some typical numerical examples are considered to evaluate the performance of the elements. The numerical results demonstrate that the present method has a high level of accuracy and is an effective technique for solving plane orthotropic elasticity problems.

Equivalent Beam Joint Modeling and Vibration Analysis Using Vehicle Side Key Sections (차체 Side Key Section 을 이용한 등가빔 결합부 모델링 및 강성해석)

  • Sung, Young-Suk;Yim, Hong-Jae;Kim, Ki-Chang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.252-257
    • /
    • 2006
  • Low vibration characteristics of a vehicle are mainly influenced by the local stiffness of the joint structure beam section. The method of substituting equivalent beam element to spring element for the joint is presented. Formation process of the equivalent beam joint modeling is described in terms of key section properties. To get required dynamic characteristics section properties of the equivalent beam element are set to design variables. The study shows that the equivalent beam joint model can be effectively used for low frequency vibration analysis of a vehicle.

  • PDF

A quasi-static finite element approach for seismic analysis of tunnels considering tunnel excavation and P-waves

  • Zhao, Wusheng;Zhong, Kun;Chen, Weizhong;Xie, Peiyao
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.549-559
    • /
    • 2022
  • The quasi-static finite element (FE) approaches are widely used for the seismic analysis of tunnels. However, the conventional quasi-static approaches may cause significant deviations when the tunnel excavation process is simulated prior to the quasi-static analysis. In addition, they cannot account for vertical excitations. Therefore, this paper first highlights the limitations of conventional approaches. A hybrid quasi-static FE approach is subsequently proposed and extensively validated for various conditions. The hybrid approach is simple and not time consuming, and it can be used for the preliminary seismic design of tunnels, especially when the tunnel excavation and vertically propagating P-waves are considered.

A refined discrete triangular Mindlin element for laminated composite plates

  • Ge, Zengjie;Chen, Wanji
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.575-593
    • /
    • 2002
  • Based on the Mindlin plate theory, a refined discrete 15-DOF triangular laminated composite plate finite element RDTMLC with the re-constitution of the shear strain is proposed. For constituting the element displacement function, the exact displacement function of the Timoshenko's laminated composite beam as the displacement on the element boundary is used to derive the element displacements. The proposed element can be used for the analysis of both moderately thick and thin laminated composite plate, and the convergence for the very thin situation can be ensured theoretically. Numerical examples presented show that the present model indeed possesses the properties of higher accuracy for anisotropic laminated composite plates and is free of locking even for extremely thin laminated plates.

Design of a Moving-magnet Electromagnetic Actuator for Fast Steering Mirror through Finite Element Simulation Method

  • Long, Yongjun;Mo, Jinqiu;Wei, Xiaohui;Wang, Chunlei;Wang, Shigang
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.300-308
    • /
    • 2014
  • This paper develops a moving-magnet electromagnetic actuator for fast steering mirror (FSM). The actuator achieves a reasonable compromise between voice coil actuator and piezoelectric actuator. The stroke of the actuator is between the strokes of a piezoelectric actuator and a voice coil actuator, and its force output is a linear function of air gap and excitation current within our FSM travel range. Additionally, the actuator is more reliable than voice coil actuator as the electrical connection in the actuator is static. Analytically modeling the actuator is difficult and time-consuming. Alternatively, numerous finite element simulations are carried out for the actuator analysis and design. According to the design results, a real prototype of the actuator is fabricated. An experimental test system is then built. Using the test system, the force output of the fabricated actuator is evaluated. The test results validate the actuator analysis and design.

Experimental study on the tension of cables and motion of tunnel element for an immersed tunnel element under wind, current and wave

  • Wu, Hao;Rheem, Chang-Kyu;Chen, Wei;Xu, Shuangxi;Wu, Weiguo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.889-901
    • /
    • 2021
  • The tension of cables and motion response significantly affect safety of an immersed tunnel element in the immersion process. To investigate those, a hydrodynamic scale-model test was carried out and the model experiments was conducted under wind, current and wave loads simultaneously. The immersion standby (the process that the position of the immersed tunnel element should be located before the immersion process) and immersion process conditions have been conducted and illustrated. At the immersion standby conditions, the maximum force of the cables and motion is much larger at the side of incoming wind, wave and current, the maximum force of Element-6 (6 cables directly tie on the element) is larger than for Pontoon-8 (8 cables tie on pontoon of the element), and the flexible connection can reduce the maximum force of the mooring cables and motion of element (i.e. sway is expecting to decrease approximate 40%). The maximum force of the mooring cables increases with the increase of current speed, wave height, and water depth. The motion of immersed tunnel element increases with increase of wave height and water depth, and the current speed had little effect on it. At the immersion process condition, the maximum force of the cables decrease with the increase of immersion depth, and dramatically increase with the increase of wave height (i.e. the tension of cable F4 of pontoons at wave height of 1.5 m (83.3t) is approximately four times that at wave height of 0.8 m). The current speed has no much effect on the maximum force of the cables. The weight has little effect on the maximum force of the mooring cables, and the maximum force of hoisting cables increase with the increase of weight. The maximum value of six-freedom motion amplitude of the immersed tunnel element decreases with the increase of immersion depth, increase with the increase of current speed and wave height (i.e. the roll motion at wave height of 1.5 m is two times that at wave height of 0.8 m). The weight has little effect on the maximum motion amplitude of the immersed tunnel element. The results are significant for the immersion safety of element in engineering practical construction process.

A Study on the Secure Global Key Recovery System (안전한 글로벌 키복구 시스템에 관한 연구)

  • Yang Hyung-Kyu;An Young-Hwa
    • Journal of Internet Computing and Services
    • /
    • v.7 no.1
    • /
    • pp.59-64
    • /
    • 2006
  • Harn al proposed a GKRS(Global Key Recovery System) that combines the functions of the key recovery authorities and the public key certification authorities(CA), Among other features, user dominance(i.e, a user is allowed to select his own public-private key pair and especially a public element for verifying the validity of the public-private key pair)is proposed by [1] for wide acceptance of GKRS. In this paper, we attack the RSA version of GKRS by showing that its user-dominance feature and the corresponding key verification scheme employed by the CA allow for fraud by users against CA. We propose more secure GKPS than original GKPS, The proposed system makes the probability of user fraud negligible small.

  • PDF

Innovative displacement-based beam-column element with shear deformation and imperfection

  • Tang, Yi-Qun;Ding, Yue-Yang;Liu, Yao-Peng;Chan, Siu-Lai;Du, Er-Feng
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.75-90
    • /
    • 2022
  • The pointwise equilibrium polynomial (PEP) element considering local second-order effect has been widely used in direct analysis of many practical engineering structures. However, it was derived according to Euler-Bernoulli beam theory and therefore it cannot consider shear deformation, which may lead to inaccurate prediction for deep beams. In this paper, a novel beam-column element based on Timoshenko beam theory is proposed to overcome the drawback of PEP element. A fifth-order polynomial is adopted for the lateral deflection of the proposed element, while a quadric shear strain field based on equilibrium equation is assumed for transverse shear deformation. Further, an additional quadric function is adopted in this new element to account for member initial geometrical imperfection. In conjunction with a reliable and effective three-dimensional (3D) co-rotational technique, the proposed element can consider both member initial imperfection and transverse shear deformation for second-order direct analysis of frame structures. Some benchmark problems are provided to demonstrate the accuracy and high performance of the proposed element. The significant adverse influence on structural behaviors due to shear deformation and initial imperfection is also discussed.

Coupled buffeting response analysis of long-span bridges by the CQC approach

  • Ding, Quanshun;Chen, Airong;Xiang, Haifan
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.505-520
    • /
    • 2002
  • Based on the modal coordinates of the structure, a finite-element and CQC (complete quadratic combination) method for analyzing the coupled buffeting response of long-span bridges is presented. The formulation of nodal equivalent aerodynamic buffeting forces is derived based on a reasonable assumption. The power spectral density and variance of nodal displacements and elemental internal forces of the bridge structure are computed using the finite-element method and the random vibration theory. The method presented is very efficient and can consider the arbitrary spectrum and spatial coherence of natural winds and the multimode and intermode effects on the buffeting responses of bridge structures. A coupled buffeting analysis of the Jiangyin Yangtse River Suspension Bridge with 1385 in main span is performed as an example. The results analyzed show that the multimode and intermode effects on the buffeting response of the bridge deck are quite remarkable.